1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
%global _empty_manifest_terminate_build 0
Name: python-metnet
Version: 4.1.14
Release: 1
Summary: PyTorch MetNet Implementation
License: MIT License
URL: https://github.com/openclimatefix/metnet
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3a/4f/bffd6422c606b1f26da39bff2881d626c85bf86f729497cb4f7bac08bed3/metnet-4.1.14.tar.gz
BuildArch: noarch
Requires: python3-einops
Requires: python3-numpy
Requires: python3-torchvision
Requires: python3-antialiased-cnns
Requires: python3-axial-attention
Requires: python3-pytorch-msssim
Requires: python3-huggingface-hub
Requires: python3-ocf-datapipes
Requires: python3-pytorch-lightning
%description
# MetNet and MetNet-2
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->
PyTorch Implementation of Google Research's MetNet for short term weather forecasting (https://arxiv.org/abs/2003.12140), inspired from https://github.com/tcapelle/metnet_pytorch/tree/master/metnet_pytorch
MetNet-2 (https://arxiv.org/pdf/2111.07470.pdf) is a further extension of MetNet that takes in a larger context image to predict up to 12 hours ahead, and is also implemented in PyTorch here.
## Installation
Clone the repository, then run
```shell
pip install -r requirements.txt
pip install -e .
````
Alternatively, you can also install a usually older version through ```pip install metnet```
Please ensure that you're using Python version 3.9 or above.
## Data
While the exact training data used for both MetNet and MetNet-2 haven't been released, the papers do go into some detail as to the inputs, which were GOES-16 and MRMS precipitation data, as well as the time period covered. We will be making those splits available, as well as a larger dataset that covers a longer time period, with [HuggingFace Datasets](https://huggingface.co/datasets/openclimatefix/goes-mrms)! Note: The dataset is not available yet, we are still processing data!
```python
from datasets import load_dataset
dataset = load_dataset("openclimatefix/goes-mrms")
```
This uses the publicly avaiilable GOES-16 data and the MRMS archive to create a similar set of data to train and test on, with various other splits available as well.
## Pretrained Weights
Pretrained model weights for MetNet and MetNet-2 have not been publicly released, and there is some difficulty in reproducing their training. We release weights for both MetNet and MetNet-2 trained on cloud mask and satellite imagery data with the same parameters as detailed in the papers on HuggingFace Hub for [MetNet](https://huggingface.co/openclimatefix/metnet) and [MetNet-2](https://huggingface.co/openclimatefix/metnet-2). These weights can be downloaded and used using:
```python
from metnet import MetNet, MetNet2
model = MetNet().from_pretrained("openclimatefix/metnet")
model = MetNet2().from_pretrained("openclimatefix/metnet-2")
```
## Example Usage
MetNet can be used with:
```python
from metnet import MetNet
import torch
import torch.nn.functional as F
model = MetNet(
hidden_dim=32,
forecast_steps=24,
input_channels=16,
output_channels=12,
sat_channels=12,
input_size=32,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 12, 16, 128, 128))
out = []
for lead_time in range(24):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
# MetNet creates predictions for the center 1/4th
y = torch.randn((2, 24, 12, 8, 8))
F.mse_loss(out, y).backward()
```
And MetNet-2 with:
```python
from metnet import MetNet2
import torch
import torch.nn.functional as F
model = MetNet2(
forecast_steps=8,
input_size=64,
num_input_timesteps=6,
upsampler_channels=128,
lstm_channels=32,
encoder_channels=64,
center_crop_size=16,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 6, 12, 256, 256))
out = []
for lead_time in range(8):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
y = torch.rand((2,8,12,64,64))
F.mse_loss(out, y).backward()
```
## Contributors ✨
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center"><a href="https://www.jacobbieker.com"><img src="https://avatars.githubusercontent.com/u/7170359?v=4?s=100" width="100px;" alt="Jacob Bieker"/><br /><sub><b>Jacob Bieker</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=jacobbieker" title="Code">💻</a></td>
<td align="center"><a href="http://jack-kelly.com"><img src="https://avatars.githubusercontent.com/u/460756?v=4?s=100" width="100px;" alt="Jack Kelly"/><br /><sub><b>Jack Kelly</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=JackKelly" title="Code">💻</a></td>
<td align="center"><a href="https://github.com/ValterFallenius"><img src="https://avatars.githubusercontent.com/u/21970939?v=4?s=100" width="100px;" alt="Valter Fallenius"/><br /><sub><b>Valter Fallenius</b></sub></a><br /><a href="#userTesting-ValterFallenius" title="User Testing">📓</a></td>
<td align="center"><a href="https://github.com/terigenbuaa"><img src="https://avatars.githubusercontent.com/u/91317406?v=4?s=100" width="100px;" alt="terigenbuaa"/><br /><sub><b>terigenbuaa</b></sub></a><br /><a href="#question-terigenbuaa" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/NMC-DAVE"><img src="https://avatars.githubusercontent.com/u/26354668?v=4?s=100" width="100px;" alt="Kan.Dai"/><br /><sub><b>Kan.Dai</b></sub></a><br /><a href="#question-NMC-DAVE" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/SaileshBechar"><img src="https://avatars.githubusercontent.com/u/38445041?v=4?s=100" width="100px;" alt="Sailesh Bechar"/><br /><sub><b>Sailesh Bechar</b></sub></a><br /><a href="#question-SaileshBechar" title="Answering Questions">💬</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
%package -n python3-metnet
Summary: PyTorch MetNet Implementation
Provides: python-metnet
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-metnet
# MetNet and MetNet-2
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->
PyTorch Implementation of Google Research's MetNet for short term weather forecasting (https://arxiv.org/abs/2003.12140), inspired from https://github.com/tcapelle/metnet_pytorch/tree/master/metnet_pytorch
MetNet-2 (https://arxiv.org/pdf/2111.07470.pdf) is a further extension of MetNet that takes in a larger context image to predict up to 12 hours ahead, and is also implemented in PyTorch here.
## Installation
Clone the repository, then run
```shell
pip install -r requirements.txt
pip install -e .
````
Alternatively, you can also install a usually older version through ```pip install metnet```
Please ensure that you're using Python version 3.9 or above.
## Data
While the exact training data used for both MetNet and MetNet-2 haven't been released, the papers do go into some detail as to the inputs, which were GOES-16 and MRMS precipitation data, as well as the time period covered. We will be making those splits available, as well as a larger dataset that covers a longer time period, with [HuggingFace Datasets](https://huggingface.co/datasets/openclimatefix/goes-mrms)! Note: The dataset is not available yet, we are still processing data!
```python
from datasets import load_dataset
dataset = load_dataset("openclimatefix/goes-mrms")
```
This uses the publicly avaiilable GOES-16 data and the MRMS archive to create a similar set of data to train and test on, with various other splits available as well.
## Pretrained Weights
Pretrained model weights for MetNet and MetNet-2 have not been publicly released, and there is some difficulty in reproducing their training. We release weights for both MetNet and MetNet-2 trained on cloud mask and satellite imagery data with the same parameters as detailed in the papers on HuggingFace Hub for [MetNet](https://huggingface.co/openclimatefix/metnet) and [MetNet-2](https://huggingface.co/openclimatefix/metnet-2). These weights can be downloaded and used using:
```python
from metnet import MetNet, MetNet2
model = MetNet().from_pretrained("openclimatefix/metnet")
model = MetNet2().from_pretrained("openclimatefix/metnet-2")
```
## Example Usage
MetNet can be used with:
```python
from metnet import MetNet
import torch
import torch.nn.functional as F
model = MetNet(
hidden_dim=32,
forecast_steps=24,
input_channels=16,
output_channels=12,
sat_channels=12,
input_size=32,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 12, 16, 128, 128))
out = []
for lead_time in range(24):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
# MetNet creates predictions for the center 1/4th
y = torch.randn((2, 24, 12, 8, 8))
F.mse_loss(out, y).backward()
```
And MetNet-2 with:
```python
from metnet import MetNet2
import torch
import torch.nn.functional as F
model = MetNet2(
forecast_steps=8,
input_size=64,
num_input_timesteps=6,
upsampler_channels=128,
lstm_channels=32,
encoder_channels=64,
center_crop_size=16,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 6, 12, 256, 256))
out = []
for lead_time in range(8):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
y = torch.rand((2,8,12,64,64))
F.mse_loss(out, y).backward()
```
## Contributors ✨
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center"><a href="https://www.jacobbieker.com"><img src="https://avatars.githubusercontent.com/u/7170359?v=4?s=100" width="100px;" alt="Jacob Bieker"/><br /><sub><b>Jacob Bieker</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=jacobbieker" title="Code">💻</a></td>
<td align="center"><a href="http://jack-kelly.com"><img src="https://avatars.githubusercontent.com/u/460756?v=4?s=100" width="100px;" alt="Jack Kelly"/><br /><sub><b>Jack Kelly</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=JackKelly" title="Code">💻</a></td>
<td align="center"><a href="https://github.com/ValterFallenius"><img src="https://avatars.githubusercontent.com/u/21970939?v=4?s=100" width="100px;" alt="Valter Fallenius"/><br /><sub><b>Valter Fallenius</b></sub></a><br /><a href="#userTesting-ValterFallenius" title="User Testing">📓</a></td>
<td align="center"><a href="https://github.com/terigenbuaa"><img src="https://avatars.githubusercontent.com/u/91317406?v=4?s=100" width="100px;" alt="terigenbuaa"/><br /><sub><b>terigenbuaa</b></sub></a><br /><a href="#question-terigenbuaa" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/NMC-DAVE"><img src="https://avatars.githubusercontent.com/u/26354668?v=4?s=100" width="100px;" alt="Kan.Dai"/><br /><sub><b>Kan.Dai</b></sub></a><br /><a href="#question-NMC-DAVE" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/SaileshBechar"><img src="https://avatars.githubusercontent.com/u/38445041?v=4?s=100" width="100px;" alt="Sailesh Bechar"/><br /><sub><b>Sailesh Bechar</b></sub></a><br /><a href="#question-SaileshBechar" title="Answering Questions">💬</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
%package help
Summary: Development documents and examples for metnet
Provides: python3-metnet-doc
%description help
# MetNet and MetNet-2
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->
PyTorch Implementation of Google Research's MetNet for short term weather forecasting (https://arxiv.org/abs/2003.12140), inspired from https://github.com/tcapelle/metnet_pytorch/tree/master/metnet_pytorch
MetNet-2 (https://arxiv.org/pdf/2111.07470.pdf) is a further extension of MetNet that takes in a larger context image to predict up to 12 hours ahead, and is also implemented in PyTorch here.
## Installation
Clone the repository, then run
```shell
pip install -r requirements.txt
pip install -e .
````
Alternatively, you can also install a usually older version through ```pip install metnet```
Please ensure that you're using Python version 3.9 or above.
## Data
While the exact training data used for both MetNet and MetNet-2 haven't been released, the papers do go into some detail as to the inputs, which were GOES-16 and MRMS precipitation data, as well as the time period covered. We will be making those splits available, as well as a larger dataset that covers a longer time period, with [HuggingFace Datasets](https://huggingface.co/datasets/openclimatefix/goes-mrms)! Note: The dataset is not available yet, we are still processing data!
```python
from datasets import load_dataset
dataset = load_dataset("openclimatefix/goes-mrms")
```
This uses the publicly avaiilable GOES-16 data and the MRMS archive to create a similar set of data to train and test on, with various other splits available as well.
## Pretrained Weights
Pretrained model weights for MetNet and MetNet-2 have not been publicly released, and there is some difficulty in reproducing their training. We release weights for both MetNet and MetNet-2 trained on cloud mask and satellite imagery data with the same parameters as detailed in the papers on HuggingFace Hub for [MetNet](https://huggingface.co/openclimatefix/metnet) and [MetNet-2](https://huggingface.co/openclimatefix/metnet-2). These weights can be downloaded and used using:
```python
from metnet import MetNet, MetNet2
model = MetNet().from_pretrained("openclimatefix/metnet")
model = MetNet2().from_pretrained("openclimatefix/metnet-2")
```
## Example Usage
MetNet can be used with:
```python
from metnet import MetNet
import torch
import torch.nn.functional as F
model = MetNet(
hidden_dim=32,
forecast_steps=24,
input_channels=16,
output_channels=12,
sat_channels=12,
input_size=32,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 12, 16, 128, 128))
out = []
for lead_time in range(24):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
# MetNet creates predictions for the center 1/4th
y = torch.randn((2, 24, 12, 8, 8))
F.mse_loss(out, y).backward()
```
And MetNet-2 with:
```python
from metnet import MetNet2
import torch
import torch.nn.functional as F
model = MetNet2(
forecast_steps=8,
input_size=64,
num_input_timesteps=6,
upsampler_channels=128,
lstm_channels=32,
encoder_channels=64,
center_crop_size=16,
)
# MetNet expects original HxW to be 4x the input size
x = torch.randn((2, 6, 12, 256, 256))
out = []
for lead_time in range(8):
out.append(model(x, lead_time))
out = torch.stack(out, dim=1)
y = torch.rand((2,8,12,64,64))
F.mse_loss(out, y).backward()
```
## Contributors ✨
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center"><a href="https://www.jacobbieker.com"><img src="https://avatars.githubusercontent.com/u/7170359?v=4?s=100" width="100px;" alt="Jacob Bieker"/><br /><sub><b>Jacob Bieker</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=jacobbieker" title="Code">💻</a></td>
<td align="center"><a href="http://jack-kelly.com"><img src="https://avatars.githubusercontent.com/u/460756?v=4?s=100" width="100px;" alt="Jack Kelly"/><br /><sub><b>Jack Kelly</b></sub></a><br /><a href="https://github.com/openclimatefix/metnet/commits?author=JackKelly" title="Code">💻</a></td>
<td align="center"><a href="https://github.com/ValterFallenius"><img src="https://avatars.githubusercontent.com/u/21970939?v=4?s=100" width="100px;" alt="Valter Fallenius"/><br /><sub><b>Valter Fallenius</b></sub></a><br /><a href="#userTesting-ValterFallenius" title="User Testing">📓</a></td>
<td align="center"><a href="https://github.com/terigenbuaa"><img src="https://avatars.githubusercontent.com/u/91317406?v=4?s=100" width="100px;" alt="terigenbuaa"/><br /><sub><b>terigenbuaa</b></sub></a><br /><a href="#question-terigenbuaa" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/NMC-DAVE"><img src="https://avatars.githubusercontent.com/u/26354668?v=4?s=100" width="100px;" alt="Kan.Dai"/><br /><sub><b>Kan.Dai</b></sub></a><br /><a href="#question-NMC-DAVE" title="Answering Questions">💬</a></td>
<td align="center"><a href="https://github.com/SaileshBechar"><img src="https://avatars.githubusercontent.com/u/38445041?v=4?s=100" width="100px;" alt="Sailesh Bechar"/><br /><sub><b>Sailesh Bechar</b></sub></a><br /><a href="#question-SaileshBechar" title="Answering Questions">💬</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
%prep
%autosetup -n metnet-4.1.14
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-metnet -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 4.1.14-1
- Package Spec generated
|