summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-metric-learn.spec200
-rw-r--r--sources1
3 files changed, 202 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..37e4483 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/metric-learn-0.6.2.tar.gz
diff --git a/python-metric-learn.spec b/python-metric-learn.spec
new file mode 100644
index 0000000..86e84de
--- /dev/null
+++ b/python-metric-learn.spec
@@ -0,0 +1,200 @@
+%global _empty_manifest_terminate_build 0
+Name: python-metric-learn
+Version: 0.6.2
+Release: 1
+Summary: Python implementations of metric learning algorithms
+License: MIT
+URL: http://github.com/scikit-learn-contrib/metric-learn
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3c/71/dad20a294738cbe289b2b9ccef96d133277e6bdef4c10a5d322157593a65/metric-learn-0.6.2.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-matplotlib
+Requires: python3-sphinx
+Requires: python3-shinx-rtd-theme
+Requires: python3-numpydoc
+Requires: python3-skggm
+
+%description
+metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
+**Algorithms**
+- Large Margin Nearest Neighbor (LMNN)
+- Information Theoretic Metric Learning (ITML)
+- Sparse Determinant Metric Learning (SDML)
+- Least Squares Metric Learning (LSML)
+- Sparse Compositional Metric Learning (SCML)
+- Neighborhood Components Analysis (NCA)
+- Local Fisher Discriminant Analysis (LFDA)
+- Relative Components Analysis (RCA)
+- Metric Learning for Kernel Regression (MLKR)
+- Mahalanobis Metric for Clustering (MMC)
+**Dependencies**
+- Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
+ `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
+- numpy, scipy, scikit-learn>=0.20.3
+**Optional dependencies**
+- For SDML, using skggm will allow the algorithm to solve problematic cases
+ (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
+ ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
+- For running the examples only: matplotlib
+**Installation/Setup**
+- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
+- To install from PyPI: ``pip install metric-learn``.
+- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
+**Usage**
+See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
+**Citation**
+If you use metric-learn in a scientific publication, we would appreciate
+citations to the following paper:
+`metric-learn: Metric Learning Algorithms in Python
+<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
+*et al.*, arXiv:1908.04710, 2019.
+Bibtex entry::
+ @techreport{metric-learn,
+ title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
+ author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
+ {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
+ institution = {arXiv:1908.04710},
+ year = {2019}
+ }
+
+%package -n python3-metric-learn
+Summary: Python implementations of metric learning algorithms
+Provides: python-metric-learn
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-metric-learn
+metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
+**Algorithms**
+- Large Margin Nearest Neighbor (LMNN)
+- Information Theoretic Metric Learning (ITML)
+- Sparse Determinant Metric Learning (SDML)
+- Least Squares Metric Learning (LSML)
+- Sparse Compositional Metric Learning (SCML)
+- Neighborhood Components Analysis (NCA)
+- Local Fisher Discriminant Analysis (LFDA)
+- Relative Components Analysis (RCA)
+- Metric Learning for Kernel Regression (MLKR)
+- Mahalanobis Metric for Clustering (MMC)
+**Dependencies**
+- Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
+ `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
+- numpy, scipy, scikit-learn>=0.20.3
+**Optional dependencies**
+- For SDML, using skggm will allow the algorithm to solve problematic cases
+ (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
+ ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
+- For running the examples only: matplotlib
+**Installation/Setup**
+- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
+- To install from PyPI: ``pip install metric-learn``.
+- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
+**Usage**
+See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
+**Citation**
+If you use metric-learn in a scientific publication, we would appreciate
+citations to the following paper:
+`metric-learn: Metric Learning Algorithms in Python
+<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
+*et al.*, arXiv:1908.04710, 2019.
+Bibtex entry::
+ @techreport{metric-learn,
+ title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
+ author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
+ {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
+ institution = {arXiv:1908.04710},
+ year = {2019}
+ }
+
+%package help
+Summary: Development documents and examples for metric-learn
+Provides: python3-metric-learn-doc
+%description help
+metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
+**Algorithms**
+- Large Margin Nearest Neighbor (LMNN)
+- Information Theoretic Metric Learning (ITML)
+- Sparse Determinant Metric Learning (SDML)
+- Least Squares Metric Learning (LSML)
+- Sparse Compositional Metric Learning (SCML)
+- Neighborhood Components Analysis (NCA)
+- Local Fisher Discriminant Analysis (LFDA)
+- Relative Components Analysis (RCA)
+- Metric Learning for Kernel Regression (MLKR)
+- Mahalanobis Metric for Clustering (MMC)
+**Dependencies**
+- Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
+ `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
+- numpy, scipy, scikit-learn>=0.20.3
+**Optional dependencies**
+- For SDML, using skggm will allow the algorithm to solve problematic cases
+ (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
+ ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
+- For running the examples only: matplotlib
+**Installation/Setup**
+- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
+- To install from PyPI: ``pip install metric-learn``.
+- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
+**Usage**
+See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
+**Citation**
+If you use metric-learn in a scientific publication, we would appreciate
+citations to the following paper:
+`metric-learn: Metric Learning Algorithms in Python
+<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
+*et al.*, arXiv:1908.04710, 2019.
+Bibtex entry::
+ @techreport{metric-learn,
+ title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
+ author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
+ {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
+ institution = {arXiv:1908.04710},
+ year = {2019}
+ }
+
+%prep
+%autosetup -n metric-learn-0.6.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-metric-learn -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..170458a
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+adddd34d88c79cb13894c9b183398548 metric-learn-0.6.2.tar.gz