summaryrefslogtreecommitdiff
path: root/python-metric-learn.spec
blob: 86e84dec9b4b84dd48d8aa93cc3d7e6ce3c1e548 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
%global _empty_manifest_terminate_build 0
Name:		python-metric-learn
Version:	0.6.2
Release:	1
Summary:	Python implementations of metric learning algorithms
License:	MIT
URL:		http://github.com/scikit-learn-contrib/metric-learn
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/3c/71/dad20a294738cbe289b2b9ccef96d133277e6bdef4c10a5d322157593a65/metric-learn-0.6.2.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-matplotlib
Requires:	python3-sphinx
Requires:	python3-shinx-rtd-theme
Requires:	python3-numpydoc
Requires:	python3-skggm

%description
metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
**Algorithms**
-  Large Margin Nearest Neighbor (LMNN)
-  Information Theoretic Metric Learning (ITML)
-  Sparse Determinant Metric Learning (SDML)
-  Least Squares Metric Learning (LSML)
-  Sparse Compositional Metric Learning (SCML)
-  Neighborhood Components Analysis (NCA)
-  Local Fisher Discriminant Analysis (LFDA)
-  Relative Components Analysis (RCA)
-  Metric Learning for Kernel Regression (MLKR)
-  Mahalanobis Metric for Clustering (MMC)
**Dependencies**
-  Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
   `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
-  numpy, scipy, scikit-learn>=0.20.3
**Optional dependencies**
- For SDML, using skggm will allow the algorithm to solve problematic cases
  (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
  ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
-  For running the examples only: matplotlib
**Installation/Setup**
- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
- To install from PyPI: ``pip install metric-learn``.
- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
**Usage**
See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
**Citation**
If you use metric-learn in a scientific publication, we would appreciate
citations to the following paper:
`metric-learn: Metric Learning Algorithms in Python
<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
*et al.*, arXiv:1908.04710, 2019.
Bibtex entry::
  @techreport{metric-learn,
    title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
    author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
              {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
    institution = {arXiv:1908.04710},
    year = {2019}
  }

%package -n python3-metric-learn
Summary:	Python implementations of metric learning algorithms
Provides:	python-metric-learn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-metric-learn
metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
**Algorithms**
-  Large Margin Nearest Neighbor (LMNN)
-  Information Theoretic Metric Learning (ITML)
-  Sparse Determinant Metric Learning (SDML)
-  Least Squares Metric Learning (LSML)
-  Sparse Compositional Metric Learning (SCML)
-  Neighborhood Components Analysis (NCA)
-  Local Fisher Discriminant Analysis (LFDA)
-  Relative Components Analysis (RCA)
-  Metric Learning for Kernel Regression (MLKR)
-  Mahalanobis Metric for Clustering (MMC)
**Dependencies**
-  Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
   `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
-  numpy, scipy, scikit-learn>=0.20.3
**Optional dependencies**
- For SDML, using skggm will allow the algorithm to solve problematic cases
  (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
  ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
-  For running the examples only: matplotlib
**Installation/Setup**
- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
- To install from PyPI: ``pip install metric-learn``.
- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
**Usage**
See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
**Citation**
If you use metric-learn in a scientific publication, we would appreciate
citations to the following paper:
`metric-learn: Metric Learning Algorithms in Python
<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
*et al.*, arXiv:1908.04710, 2019.
Bibtex entry::
  @techreport{metric-learn,
    title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
    author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
              {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
    institution = {arXiv:1908.04710},
    year = {2019}
  }

%package help
Summary:	Development documents and examples for metric-learn
Provides:	python3-metric-learn-doc
%description help
metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of `scikit-learn-contrib <https://github.com/scikit-learn-contrib>`_, the API of metric-learn is compatible with `scikit-learn <http://scikit-learn.org/stable/>`_, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
**Algorithms**
-  Large Margin Nearest Neighbor (LMNN)
-  Information Theoretic Metric Learning (ITML)
-  Sparse Determinant Metric Learning (SDML)
-  Least Squares Metric Learning (LSML)
-  Sparse Compositional Metric Learning (SCML)
-  Neighborhood Components Analysis (NCA)
-  Local Fisher Discriminant Analysis (LFDA)
-  Relative Components Analysis (RCA)
-  Metric Learning for Kernel Regression (MLKR)
-  Mahalanobis Metric for Clustering (MMC)
**Dependencies**
-  Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
   `v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>`_)
-  numpy, scipy, scikit-learn>=0.20.3
**Optional dependencies**
- For SDML, using skggm will allow the algorithm to solve problematic cases
  (install from commit `a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>`_).
  ``pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'`` to install the required version of skggm from GitHub.
-  For running the examples only: matplotlib
**Installation/Setup**
- If you use Anaconda: ``conda install -c conda-forge metric-learn``. See more options `here <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>`_.
- To install from PyPI: ``pip install metric-learn``.
- For a manual install of the latest code, download the source repository and run ``python setup.py install``. You may then run ``pytest test`` to run all tests (you will need to have the ``pytest`` package installed).
**Usage**
See the `sphinx documentation`_ for full documentation about installation, API, usage, and examples.
**Citation**
If you use metric-learn in a scientific publication, we would appreciate
citations to the following paper:
`metric-learn: Metric Learning Algorithms in Python
<https://arxiv.org/abs/1908.04710>`_, de Vazelhes
*et al.*, arXiv:1908.04710, 2019.
Bibtex entry::
  @techreport{metric-learn,
    title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython},
    author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and
              {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien},
    institution = {arXiv:1908.04710},
    year = {2019}
  }

%prep
%autosetup -n metric-learn-0.6.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-metric-learn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.2-1
- Package Spec generated