1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
%global _empty_manifest_terminate_build 0
Name: python-mloq
Version: 0.0.75
Release: 1
Summary: Package for initializing ML projects following ML Ops best practices.
License: MIT
URL: https://github.com/FragileTech/ml-ops-quickstart
Source0: https://mirrors.aliyun.com/pypi/web/packages/d5/6b/9f81a334398bcaff16c0fba8de8b878e7bdd0a8331872069e36626a2bee5/mloq-0.0.75.tar.gz
BuildArch: noarch
Requires: python3-flogging
Requires: python3-jinja2
Requires: python3-click
Requires: python3-invoke
Requires: python3-hydra-core
Requires: python3-param
Requires: python3-pre-commit
Requires: python3-typing-extensions
%description
# ML Ops Quickstart
[](https://mloq.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/github/fragiletech/ml-ops-quickstart)
[](https://pypi.org/project/mloq/)
[](https://github.com/ambv/black)
[](https://opensource.org/licenses/MIT)
ML Ops Quickstart is a tool for initializing Machine Learning projects following ML Ops best practices.
Setting up new repositories is a time-consuming task that involves creating different files and
configuring tools such as linters, docker containers and continuous integration pipelines.
The goal of `mloq` is to simplify that process, so you can start writing code as fast as possible.
`mloq` generates customized templates for Python projects with focus on Maching Learning. An example of
the generated templates can be found in [mloq-template](https://github.com/FragileTech/mloq-template).
## [1.](#Index) Installation
`mloq` is tested on Ubuntu 18.04+, and supports Python 3.6+.
### Install from pypi
```bash
pip install mloq
```
### Install from source
```bash
git clone https://github.com/FragileTech/ml-ops-quickstart.git
cd ml-ops-quickstart
pip install -e .
```
## [2.](#Index) Usage
### [2.1](#Index) Command line interface
Options:
* `--file` `-f`: Name of the configuration file. If `file` it's a directory it will load the `mloq.yml` file present in it.
* `--overwrite` `-o`: Rewrite files that already exist in the target project.
* `--interactive` `-i`: Missing configuration data can be defined interactively from the CLI.
#### Usage examples
Arguments:
* `OUTPUT_DIRECTORY`: Path to the target project.
To set up a new repository from scratch interactively in the curren working directory:
```bash
mloq setup -i .
```
To load a `mloq.yml` configuration file from the current repository, and initialize the directory `example`, and
overwrite all existing files with no interactivity:
```bash
mloq setup -f . -o example
```

## [5.](#Index) License
ML Ops Quickstart is released under the [MIT](LICENSE) license.
## [6.](#Index) Contributing
Contributions are very welcome! Please check the [contributing guidelines](CONTRIBUTING.md) before opening a pull request.
%package -n python3-mloq
Summary: Package for initializing ML projects following ML Ops best practices.
Provides: python-mloq
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mloq
# ML Ops Quickstart
[](https://mloq.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/github/fragiletech/ml-ops-quickstart)
[](https://pypi.org/project/mloq/)
[](https://github.com/ambv/black)
[](https://opensource.org/licenses/MIT)
ML Ops Quickstart is a tool for initializing Machine Learning projects following ML Ops best practices.
Setting up new repositories is a time-consuming task that involves creating different files and
configuring tools such as linters, docker containers and continuous integration pipelines.
The goal of `mloq` is to simplify that process, so you can start writing code as fast as possible.
`mloq` generates customized templates for Python projects with focus on Maching Learning. An example of
the generated templates can be found in [mloq-template](https://github.com/FragileTech/mloq-template).
## [1.](#Index) Installation
`mloq` is tested on Ubuntu 18.04+, and supports Python 3.6+.
### Install from pypi
```bash
pip install mloq
```
### Install from source
```bash
git clone https://github.com/FragileTech/ml-ops-quickstart.git
cd ml-ops-quickstart
pip install -e .
```
## [2.](#Index) Usage
### [2.1](#Index) Command line interface
Options:
* `--file` `-f`: Name of the configuration file. If `file` it's a directory it will load the `mloq.yml` file present in it.
* `--overwrite` `-o`: Rewrite files that already exist in the target project.
* `--interactive` `-i`: Missing configuration data can be defined interactively from the CLI.
#### Usage examples
Arguments:
* `OUTPUT_DIRECTORY`: Path to the target project.
To set up a new repository from scratch interactively in the curren working directory:
```bash
mloq setup -i .
```
To load a `mloq.yml` configuration file from the current repository, and initialize the directory `example`, and
overwrite all existing files with no interactivity:
```bash
mloq setup -f . -o example
```

## [5.](#Index) License
ML Ops Quickstart is released under the [MIT](LICENSE) license.
## [6.](#Index) Contributing
Contributions are very welcome! Please check the [contributing guidelines](CONTRIBUTING.md) before opening a pull request.
%package help
Summary: Development documents and examples for mloq
Provides: python3-mloq-doc
%description help
# ML Ops Quickstart
[](https://mloq.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/github/fragiletech/ml-ops-quickstart)
[](https://pypi.org/project/mloq/)
[](https://github.com/ambv/black)
[](https://opensource.org/licenses/MIT)
ML Ops Quickstart is a tool for initializing Machine Learning projects following ML Ops best practices.
Setting up new repositories is a time-consuming task that involves creating different files and
configuring tools such as linters, docker containers and continuous integration pipelines.
The goal of `mloq` is to simplify that process, so you can start writing code as fast as possible.
`mloq` generates customized templates for Python projects with focus on Maching Learning. An example of
the generated templates can be found in [mloq-template](https://github.com/FragileTech/mloq-template).
## [1.](#Index) Installation
`mloq` is tested on Ubuntu 18.04+, and supports Python 3.6+.
### Install from pypi
```bash
pip install mloq
```
### Install from source
```bash
git clone https://github.com/FragileTech/ml-ops-quickstart.git
cd ml-ops-quickstart
pip install -e .
```
## [2.](#Index) Usage
### [2.1](#Index) Command line interface
Options:
* `--file` `-f`: Name of the configuration file. If `file` it's a directory it will load the `mloq.yml` file present in it.
* `--overwrite` `-o`: Rewrite files that already exist in the target project.
* `--interactive` `-i`: Missing configuration data can be defined interactively from the CLI.
#### Usage examples
Arguments:
* `OUTPUT_DIRECTORY`: Path to the target project.
To set up a new repository from scratch interactively in the curren working directory:
```bash
mloq setup -i .
```
To load a `mloq.yml` configuration file from the current repository, and initialize the directory `example`, and
overwrite all existing files with no interactivity:
```bash
mloq setup -f . -o example
```

## [5.](#Index) License
ML Ops Quickstart is released under the [MIT](LICENSE) license.
## [6.](#Index) Contributing
Contributions are very welcome! Please check the [contributing guidelines](CONTRIBUTING.md) before opening a pull request.
%prep
%autosetup -n mloq-0.0.75
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mloq -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.75-1
- Package Spec generated
|