1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
|
%global _empty_manifest_terminate_build 0
Name: python-mlprimitives
Version: 0.3.5
Release: 1
Summary: Pipelines and primitives for machine learning and data science.
License: MIT license
URL: https://github.com/MLBazaar/MLPrimitives
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/67/87/1ea0faf9e1314f1739a3e61781e411d230850f06532451ac3e2adf0df41c/mlprimitives-0.3.5.tar.gz
BuildArch: noarch
Requires: python3-Keras
Requires: python3-featuretools
Requires: python3-iso639
Requires: python3-langdetect
Requires: python3-lightfm
Requires: python3-mlblocks
Requires: python3-networkx
Requires: python3-nltk
Requires: python3-numpy
Requires: python3-opencv-python
Requires: python3-pandas
Requires: python3-louvain
Requires: python3-scikit-image
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-statsmodels
Requires: python3-tensorflow
Requires: python3-xgboost
Requires: python3-protobuf
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-rundoc
Requires: python3-bumpversion
Requires: python3-pip
Requires: python3-watchdog
Requires: python3-m2r
Requires: python3-Sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-docutils
Requires: python3-ipython
Requires: python3-mistune
Requires: python3-Jinja2
Requires: python3-flake8
Requires: python3-isort
Requires: python3-autoflake
Requires: python3-autopep8
Requires: python3-importlib-metadata
Requires: python3-twine
Requires: python3-wheel
Requires: python3-coverage
Requires: python3-tox
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-rundoc
%description
<p align="left">
<a href="https://dai.lids.mit.edu">
<img width=15% src="https://dai.lids.mit.edu/wp-content/uploads/2018/06/Logo_DAI_highres.png" alt="DAI-Lab" />
</a>
<i>An Open Source Project from the <a href="https://dai.lids.mit.edu">Data to AI Lab, at MIT</a></i>
</p>
[](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
[](https://pypi.python.org/pypi/mlprimitives)
[](https://github.com/MLBazaar/MLPrimitives/actions?query=workflow%3A%22Run+Tests%22+branch%3Amaster)
[](https://pepy.tech/project/mlprimitives)
[](https://mybinder.org/v2/gh/MLBazaar/MLBlocks/master?filepath=examples/tutorials)
# MLPrimitives
Pipelines and primitives for machine learning and data science.
* Documentation: https://MLBazaar.github.io/MLPrimitives
* Github: https://github.com/MLBazaar/MLPrimitives
* License: [MIT](https://github.com/MLBazaar/MLPrimitives/blob/master/LICENSE)
* Development Status: [Pre-Alpha](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
# Overview
This repository contains primitive annotations to be used by the MLBlocks library, as well as
the necessary Python code to make some of them fully compatible with the MLBlocks API requirements.
There is also a collection of custom primitives contributed directly to this library, which either
combine third party tools or implement new functionalities from scratch.
## Why did we create this library?
* Too many libraries in a fast growing field
* Huge societal need to build machine learning apps
* Domain expertise resides at several places (knowledge of math)
* No documented information about hyperparameters, behavior...
# Installation
## Requirements
**MLPrimitives** has been developed and tested on [Python 3.6, 3.7 and 3.8](https://www.python.org/downloads/)
Also, although it is not strictly required, the usage of a
[virtualenv](https://virtualenv.pypa.io/en/latest/) is highly recommended in order to avoid
interfering with other software installed in the system where **MLPrimitives** is run.
## Install with pip
The easiest and recommended way to install **MLPrimitives** is using [pip](https://pip.pypa.io/en/stable/):
```bash
pip install mlprimitives
```
This will pull and install the latest stable release from [PyPi](https://pypi.org/).
If you want to install from source or contribute to the project please read the
[Contributing Guide](https://MLBazaar.github.io/MLPrimitives/community/welcome.html).
# Quickstart
This section is a short series of tutorials to help you getting started with MLPrimitives.
In the following steps you will learn how to load and run a primitive on some data.
Later on you will learn how to evaluate and improve the performance of a primitive by tuning
its hyperparameters.
## Running a Primitive
In this first tutorial, we will be executing a single primitive for data transformation.
### 1. Load a Primitive
The first step in order to run a primitive is to load it.
This will be done using the `mlprimitives.load_primitive` function, which will
load the indicated primitive as an [MLBlock Object from MLBlocks](https://MLBazaar.github.io/MLBlocks/api/mlblocks.html#mlblocks.MLBlock)
In this case, we will load the `mlprimitives.custom.feature_extraction.CategoricalEncoder`
primitive.
```python3
from mlprimitives import load_primitive
primitive = load_primitive('mlprimitives.custom.feature_extraction.CategoricalEncoder')
```
### 2. Load some data
The CategoricalEncoder is a transformation primitive which applies one-hot encoding to all the
categorical columns of a `pandas.DataFrame`.
So, in order to be able to run our primitive, we will first load some data that contains
categorical columns.
This can be done with the `mlprimitives.datasets.load_census` function:
```python3
from mlprimitives.datasets import load_census
dataset = load_census()
```
This dataset object has an attribute `data` which contains a table with several categorical
columns.
We can have a look at this table by executing `dataset.data.head()`, which will return a
table like this:
```
0 1 2
age 39 50 38
workclass State-gov Self-emp-not-inc Private
fnlwgt 77516 83311 215646
education Bachelors Bachelors HS-grad
education-num 13 13 9
marital-status Never-married Married-civ-spouse Divorced
occupation Adm-clerical Exec-managerial Handlers-cleaners
relationship Not-in-family Husband Not-in-family
race White White White
sex Male Male Male
capital-gain 2174 0 0
capital-loss 0 0 0
hours-per-week 40 13 40
native-country United-States United-States United-States
```
### 3. Fit the primitive
In order to run our pipeline, we first need to fit it.
This is the process where it analyzes the data to detect which columns are categorical
This is done by calling its `fit` method and assing the `dataset.data` as `X`.
```python3
primitive.fit(X=dataset.data)
```
### 4. Produce results
Once the pipeline is fit, we can process the data by calling the `produce` method of the
primitive instance and passing agin the `data` as `X`.
```python3
transformed = primitive.produce(X=dataset.data)
```
After this is done, we can see how the transformed data contains the newly generated
one-hot vectors:
```
0 1 2 3 4
age 39 50 38 53 28
fnlwgt 77516 83311 215646 234721 338409
education-num 13 13 9 7 13
capital-gain 2174 0 0 0 0
capital-loss 0 0 0 0 0
hours-per-week 40 13 40 40 40
workclass= Private 0 0 1 1 1
workclass= Self-emp-not-inc 0 1 0 0 0
workclass= Local-gov 0 0 0 0 0
workclass= ? 0 0 0 0 0
workclass= State-gov 1 0 0 0 0
workclass= Self-emp-inc 0 0 0 0 0
... ... ... ... ... ...
```
## Tuning a Primitive
In this short tutorial we will teach you how to evaluate the performance of a primitive
and improve its performance by modifying its hyperparameters.
To do so, we will load a primitive that can learn from the transformed data that we just
generated and later on make predictions based on new data.
### 1. Load another primitive
Firs of all, we will load the `xgboost.XGBClassifier` primitive that we will use afterwards.
```python3
primitive = load_primitive('xgboost.XGBClassifier')
```
### 2. Split the dataset
Before being able to evaluate the primitive perfomance, we need to split the data in two
parts: train, which will be used for the primitive to learn, and test, which will be used
to make the predictions that later on will be evaluated.
In order to do this, we will get the first 75% of rows from the transformed data that we
obtained above and call it `X_train`, and then set the next 25% of rows as `X_test`.
```python3
train_size = int(len(transformed) * 0.75)
X_train = transformed.iloc[:train_size]
X_test = transformed.iloc[train_size:]
```
Similarly, we need to obtain the `y_train` and `y_test` variables containing the corresponding
output values.
```python3
y_train = dataset.target[:train_size]
y_test = dataset.target[train_size:]
```
### 3. Fit the new primitive
Once we have have splitted the data, we can fit the primitive by passing `X_train` and `y_train`
to its `fit` method.
```python3
primitive.fit(X=X_train, y=y_train)
```
### 4. Make predictions
Once the primitive has been fitted, we can produce predictions using the `X_test` data as input.
```python3
predictions = primitive.produce(X=X_test)
```
### 5. Evalute the performance
We can now evaluate how good the predictions from our primitive are by using the `score`
method from the `dataset` object on both the expected output and the real output from the
primitive:
```python3
dataset.score(y_test, predictions)
```
This will output a float value between 0 and 1 indicating how good the predicitons are, being
0 the worst score possible and 1 the best one.
In this case we will obtain a score around 0.866
### 6. Set new hyperparameter values
In order to improve the performance of our primitive we will try to modify a couple of its
hyperparameters.
First we will see which hyperparameter values the primitive has by calling its
`get_hyperparameters` method.
```python3
primitive.get_hyperparameters()
```
which will return a dictionary like this:
```python
{
"n_jobs": -1,
"n_estimators": 100,
"max_depth": 3,
"learning_rate": 0.1,
"gamma": 0,
"min_child_weight": 1
}
```
Next, we will see which are the valid values for each one of those hyperparameters by calling its
`get_tunable_hyperparameters` method:
```python3
primitive.get_tunable_hyperparameters()
```
For example, we will see that the `max_depth` hyperparameter has the following specification:
```python
{
"type": "int",
"default": 3,
"range": [
3,
10
]
}
```
Next, we will choose a valid value, for example 7, and set it into the pipeline using the
`set_hyperparameters` method:
```python3
primitive.set_hyperparameters({'max_depth': 7})
```
### 7. Re-evaluate the performance
Once the new hyperparameter value has been set, we repeat the fit/train/score cycle to
evaluate the performance of this new hyperparameter value:
```python3
primitive.fit(X=X_train, y=y_train)
predictions = primitive.produce(X=X_test)
dataset.score(y_test, predictions)
```
This time we should see that the performance has improved to a value around 0.724
## What's Next?
Do you want to [learn more about how the project](https://MLBazaar.github.io/MLPrimitives/getting_started/concepts.html),
about [how to contribute to it](https://MLBazaar.github.io/MLPrimitives/community/contributing.html)
or browse the [API Reference](https://MLBazaar.github.io/MLPrimitives/api/mlprimitives.html)?
Please check the corresponding sections of the [documentation](https://MLBazaar.github.io/MLPrimitives/)!
# History
## 0.3.5 - 2023-04-14
### General Imporvements
* Update `mlblocks` cap - [Issue #278](https://github.com/MLBazaar/MLPrimitives/issues/278) by @sarahmish
## 0.3.4 - 2023-01-24
### General Imporvements
* Update `mlblocks` cap - [Issue #277](https://github.com/MLBazaar/MLPrimitives/issues/277) by @sarahmish
## 0.3.3 - 2023-01-20
### General Imporvements
* Update dependencies - [Issue #276](https://github.com/MLBazaar/MLPrimitives/issues/276) by @sarahmish
### Adapter Improvements
* Building model within fit in keras adapter- [Issue #267](https://github.com/MLBazaar/MLPrimitives/issues/267) by @sarahmish
## 0.3.2 - 2021-11-09
### Adapter Improvements
* Inferring data shapes with single dimension for keras adapter - [Issue #265](https://github.com/MLBazaar/MLPrimitives/issues/265) by @sarahmish
## 0.3.1 - 2021-10-07
### Adapter Improvements
* Dynamic target_shape in keras adapter - [Issue #263](https://github.com/MLBazaar/MLPrimitives/issues/263) by @sarahmish
* Save keras primitives in Windows environment - [Issue #261](https://github.com/MLBazaar/MLPrimitives/issues/261) by @sarahmish
### General Imporvements
* Update TensorFlow and NumPy dependency - [Issue #259](https://github.com/MLBazaar/MLPrimitives/issues/259) by @sarahmish
## 0.3.0 - 2021-01-09
### New Primitives
* Add primitive `sklearn.naive_bayes.GaussianNB` - [Issue #242](https://github.com/MLBazaar/MLPrimitives/issues/242) by @sarahmish
* Add primitive `sklearn.linear_model.SGDClassifier` - [Issue #241](https://github.com/MLBazaar/MLPrimitives/issues/241) by @sarahmish
### Primitive Improvements
* Add offset to rolling_window_sequence primitive - [Issue #251](https://github.com/MLBazaar/MLPrimitives/issues/251) by @skyeeiskowitz
* Rename the time_index column to time - [Issue #252](https://github.com/MLBazaar/MLPrimitives/issues/252) by @pvk-developer
* Update featuretools dependency - [Issue #250](https://github.com/MLBazaar/MLPrimitives/issues/250) by @pvk-developer
### General Improvements
* Udpate dependencies and add python3.8 - [Issue #246](https://github.com/MLBazaar/MLPrimitives/issues/246) by @csala
* Drop Python35 - [Issue #244](https://github.com/MLBazaar/MLPrimitives/issues/244) by @csala
## 0.2.5 - 2020-07-29
### Primitive Improvements
* Accept timedelta `window_size` in `cutoff_window_sequences` - [Issue #239](https://github.com/MLBazaar/MLPrimitives/issues/239) by @joanvaquer
### Bug Fixes
* ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow via `pip install tensorflow` - [Issue #237](https://github.com/MLBazaar/MLPrimitives/issues/237) by @joanvaquer
### New Primitives
* Add `pandas.DataFrame.set_index` primitive - [Issue #222](https://github.com/MLBazaar/MLPrimitives/issues/222) by @JDTheRipperPC
## 0.2.4 - 2020-01-30
### New Primitives
* Add RangeScaler and RangeUnscaler primitives - [Issue #232](https://github.com/MLBazaar/MLPrimitives/issues/232) by @csala
### Primitive Improvements
* Extract input_shape from X in keras.Sequential - [Issue #223](https://github.com/MLBazaar/MLPrimitives/issues/223) by @csala
### Bug Fixes
* mlprimitives.custom.text.TextCleaner fails if text is empty - [Issue #228](https://github.com/MLBazaar/MLPrimitives/issues/228) by @csala
* Error when loading the reviews dataset - [Issue #230](https://github.com/MLBazaar/MLPrimitives/issues/230) by @csala
* Curate dependencies: specify an explicit prompt-toolkit version range - [Issue #224](https://github.com/MLBazaar/MLPrimitives/issues/224) by @csala
## 0.2.3 - 2019-11-14
### New Primitives
* Add primitive to make window_sequences based on cutoff times - [Issue #217](https://github.com/MLBazaar/MLPrimitives/issues/217) by @csala
* Create a keras LSTM based TimeSeriesClassifier primitive - [Issue #218](https://github.com/MLBazaar/MLPrimitives/issues/218) by @csala
* Add pandas DataFrame primitives - [Issue #214](https://github.com/MLBazaar/MLPrimitives/issues/214) by @csala
* Add featuretools.EntitySet.normalize_entity primitive - [Issue #209](https://github.com/MLBazaar/MLPrimitives/issues/209) by @csala
### Primitive Improvements
* Make featuretools.EntitySet.entity_from_dataframe entityset arg optional - [Issue #208](https://github.com/MLBazaar/MLPrimitives/issues/208) by @csala
* Add text regression dataset - [Issue #206](https://github.com/MLBazaar/MLPrimitives/issues/206) by @csala
### Bug Fixes
* pandas.DataFrame.resample crash when grouping by integer columns - [Issue #211](https://github.com/MLBazaar/MLPrimitives/issues/211) by @csala
## 0.2.2 - 2019-10-08
### New Primitives
* Add primitives for GAN based time-series anomaly detection - [Issue #200](https://github.com/MLBazaar/MLPrimitives/issues/200) by @AlexanderGeiger
* Add `numpy.reshape` and `numpy.ravel` primitives - [Issue #197](https://github.com/MLBazaar/MLPrimitives/issues/197) by @AlexanderGeiger
* Add feature selection primitive based on Lasso - [Issue #194](https://github.com/MLBazaar/MLPrimitives/issues/194) by @csala
### Primitive Improvements
* `feature_extraction.CategoricalEncoder` support dtype category - [Issue #196](https://github.com/MLBazaar/MLPrimitives/issues/196) by @csala
## 0.2.1 - 2019-09-09
### New Primitives
* Timeseries Intervals to Mask Primitive - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
* Add new primitive: Arima model - [Issue #168](https://github.com/MLBazaar/MLPrimitives/issues/168) by @AlexanderGeiger
### Primitive Improvements
* Curate PCA primitive hyperparameters - [Issue #190](https://github.com/MLBazaar/MLPrimitives/issues/190) by @AlexanderGeiger
* Add option to drop rolling window sequences - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
### Bug Fixes
* scikit-image==0.14.3 crashes when installed on Mac - [Issue #188](https://github.com/MLBazaar/MLPrimitives/issues/188) by @csala
## 0.2.0
### New Features
* Publish the pipelines as an `entry_point`
[Issue #175](https://github.com/MLBazaar/MLPrimitives/issues/175) by @csala
### Primitive Improvements
* Improve pandas.DataFrame.resample primitive [Issue #177](https://github.com/MLBazaar/MLPrimitives/issues/177) by @csala
* Improve `feature_extractor` primitives [Issue #183](https://github.com/MLBazaar/MLPrimitives/issues/183) by @csala
* Improve `find_anomalies` primitive [Issue #180](https://github.com/MLBazaar/MLPrimitives/issues/180) by @AlexanderGeiger
### Bug Fixes
* Typo in the primitive keras.Sequential.LSTMTimeSeriesRegressor [Issue #176](https://github.com/MLBazaar/MLPrimitives/issues/176) by @DanielCalvoCerezo
## 0.1.10
### New Features
* Add function to run primitives without a pipeline [Issue #43](https://github.com/MLBazaar/MLPrimitives/issues/43) by @csala
### New Pipelines
* Add pipelines for all the MLBlocks examples [Issue #162](https://github.com/MLBazaar/MLPrimitives/issues/162) by @csala
### Primitive Improvements
* Add Early Stopping to `keras.Sequential.LSTMTimeSeriesRegressor` primitive [Issue #156](https://github.com/MLBazaar/MLPrimitives/issues/156) by @csala
* Make FeatureExtractor primitives accept Numpy arrays [Issue #165](https://github.com/MLBazaar/MLPrimitives/issues/165) by @csala
* Add window size and pruning to the `timeseries_anomalies.find_anomalies` primitive [Issue #160](https://github.com/MLBazaar/MLPrimitives/issues/160) by @csala
## 0.1.9
### New Features
* Add a single table binary classification dataset [Issue #141](https://github.com/MLBazaar/MLPrimitives/issues/141) by @csala
### New Primitives
* Add Multilayer Perceptron (MLP) primitive for binary classification [Issue #140](https://github.com/MLBazaar/MLPrimitives/issues/140) by @Hector-hedb12
* Add primitive for Sequence classification with LSTM [Issue #150](https://github.com/MLBazaar/MLPrimitives/issues/150) by @Hector-hedb12
* Add VGG-like convnet primitive [Issue #149](https://github.com/MLBazaar/MLPrimitives/issues/149) by @Hector-hedb12
* Add Multilayer Perceptron (MLP) primitive for multi-class softmax classification [Issue #139](https://github.com/MLBazaar/MLPrimitives/issues/139) by @Hector-hedb12
* Add primitive to count feature matrix columns [Issue #146](https://github.com/MLBazaar/MLPrimitives/issues/146) by @csala
### Primitive Improvements
* Add additional fit and predict arguments to keras.Sequential [Issue #161](https://github.com/MLBazaar/MLPrimitives/issues/161) by @csala
* Add suport for keras.Sequential Callbacks [Issue #159](https://github.com/MLBazaar/MLPrimitives/issues/159) by @csala
* Add fixed hyperparam to control keras.Sequential verbosity [Issue #143](https://github.com/MLBazaar/MLPrimitives/issues/143) by @csala
## 0.1.8
### New Primitives
* mlprimitives.custom.timeseries_preprocessing.time_segments_average - [Issue #137](https://github.com/MLBazaar/MLPrimitives/issues/137)
### New Features
* Add target_index output in timseries_preprocessing.rolling_window_sequences - [Issue #136](https://github.com/MLBazaar/MLPrimitives/issues/136)
## 0.1.7
### General Improvements
* Validate JSON format in `make lint` - [Issue #133](https://github.com/MLBazaar/MLPrimitives/issues/133)
* Add demo datasets - [Issue #131](https://github.com/MLBazaar/MLPrimitives/issues/131)
* Improve featuretools.dfs primitive - [Issue #127](https://github.com/MLBazaar/MLPrimitives/issues/127)
### New Primitives
* pandas.DataFrame.resample - [Issue #123](https://github.com/MLBazaar/MLPrimitives/issues/123)
* pandas.DataFrame.unstack - [Issue #124](https://github.com/MLBazaar/MLPrimitives/issues/124)
* featuretools.EntitySet.add_relationship - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
* featuretools.EntitySet.entity_from_dataframe - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
### Bug Fixes
* Bug in timeseries_anomalies.py - [Issue #119](https://github.com/MLBazaar/MLPrimitives/issues/119)
## 0.1.6
### General Improvements
* Add Contributing Documentation
* Remove upper bound in pandas version given new release of `featuretools` v0.6.1
* Improve LSTMTimeSeriesRegressor hyperparameters
### New Primitives
* mlprimitives.candidates.dsp.SpectralMask
* mlprimitives.custom.timeseries_anomalies.find_anomalies
* mlprimitives.custom.timeseries_anomalies.regression_errors
* mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences
* mlprimitives.custom.timeseries_preprocessing.time_segments_average
* sklearn.linear_model.ElasticNet
* sklearn.linear_model.Lars
* sklearn.linear_model.Lasso
* sklearn.linear_model.MultiTaskLasso
* sklearn.linear_model.Ridge
## 0.1.5
### New Primitives
* sklearn.impute.SimpleImputer
* sklearn.preprocessing.MinMaxScaler
* sklearn.preprocessing.MaxAbsScaler
* sklearn.preprocessing.RobustScaler
* sklearn.linear_model.LinearRegression
### General Improvements
* Separate curated from candidate primitives
* Setup `entry_points` in setup.py to improve compaitibility with MLBlocks
* Add a test-pipelines command to test all the existing pipelines
* Clean sklearn example pipelines
* Change the `author` entry to a `contributors` list
* Change the name of `mlblocks_primitives` folder
* Pip install `requirements_dev.txt` fail documentation
### Bug Fixes
* Fix LSTMTimeSeriesRegressor primitive. Issue #90
* Fix timeseries primitives. Issue #91
* Negative index anomalies in `timeseries_errors`. Issue #89
* Keep pandas version below 0.24.0. Issue #87
## 0.1.4
### New Primitives
* mlprimitives.timeseries primitives for timeseries data preprocessing
* mlprimitives.timeseres_error primitives for timeseries anomaly detection
* keras.Sequential.LSTMTimeSeriesRegressor
* sklearn.neighbors.KNeighbors Classifier and Regressor
* several sklearn.decomposition primitives
* several sklearn.ensemble primitives
### Bug Fixes
* Fix typo in mlprimitives.text.TextCleaner primitive
* Fix bug in index handling in featuretools.dfs primitive
* Fix bug in SingleLayerCNNImageClassifier annotation
* Remove old vlaidation tags from JSON annotations
## 0.1.3
### New Features
* Fix and re-enable featuretools.dfs primitive.
## 0.1.2
### New Features
* Add pipeline specification language and Evaluation utilities.
* Add pipelines for graph, text and tabular problems.
* New primitives ClassEncoder and ClassDecoder
* New primitives UniqueCounter and VocabularyCounter
### Bug Fixes
* Fix TrivialPredictor bug when working with numpy arrays
* Change XGB default learning rate and number of estimators
## 0.1.1
### New Features
* Add more keras.applications primitives.
* Add a Text Cleanup primitive.
### Bug Fixes
* Add keywords to `keras.preprocessing` primtives.
* Fix the `image_transform` method.
* Add `epoch` as a fixed hyperparameter for `keras.Sequential` primitives.
## 0.1.0
* First release on PyPI.
%package -n python3-mlprimitives
Summary: Pipelines and primitives for machine learning and data science.
Provides: python-mlprimitives
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mlprimitives
<p align="left">
<a href="https://dai.lids.mit.edu">
<img width=15% src="https://dai.lids.mit.edu/wp-content/uploads/2018/06/Logo_DAI_highres.png" alt="DAI-Lab" />
</a>
<i>An Open Source Project from the <a href="https://dai.lids.mit.edu">Data to AI Lab, at MIT</a></i>
</p>
[](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
[](https://pypi.python.org/pypi/mlprimitives)
[](https://github.com/MLBazaar/MLPrimitives/actions?query=workflow%3A%22Run+Tests%22+branch%3Amaster)
[](https://pepy.tech/project/mlprimitives)
[](https://mybinder.org/v2/gh/MLBazaar/MLBlocks/master?filepath=examples/tutorials)
# MLPrimitives
Pipelines and primitives for machine learning and data science.
* Documentation: https://MLBazaar.github.io/MLPrimitives
* Github: https://github.com/MLBazaar/MLPrimitives
* License: [MIT](https://github.com/MLBazaar/MLPrimitives/blob/master/LICENSE)
* Development Status: [Pre-Alpha](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
# Overview
This repository contains primitive annotations to be used by the MLBlocks library, as well as
the necessary Python code to make some of them fully compatible with the MLBlocks API requirements.
There is also a collection of custom primitives contributed directly to this library, which either
combine third party tools or implement new functionalities from scratch.
## Why did we create this library?
* Too many libraries in a fast growing field
* Huge societal need to build machine learning apps
* Domain expertise resides at several places (knowledge of math)
* No documented information about hyperparameters, behavior...
# Installation
## Requirements
**MLPrimitives** has been developed and tested on [Python 3.6, 3.7 and 3.8](https://www.python.org/downloads/)
Also, although it is not strictly required, the usage of a
[virtualenv](https://virtualenv.pypa.io/en/latest/) is highly recommended in order to avoid
interfering with other software installed in the system where **MLPrimitives** is run.
## Install with pip
The easiest and recommended way to install **MLPrimitives** is using [pip](https://pip.pypa.io/en/stable/):
```bash
pip install mlprimitives
```
This will pull and install the latest stable release from [PyPi](https://pypi.org/).
If you want to install from source or contribute to the project please read the
[Contributing Guide](https://MLBazaar.github.io/MLPrimitives/community/welcome.html).
# Quickstart
This section is a short series of tutorials to help you getting started with MLPrimitives.
In the following steps you will learn how to load and run a primitive on some data.
Later on you will learn how to evaluate and improve the performance of a primitive by tuning
its hyperparameters.
## Running a Primitive
In this first tutorial, we will be executing a single primitive for data transformation.
### 1. Load a Primitive
The first step in order to run a primitive is to load it.
This will be done using the `mlprimitives.load_primitive` function, which will
load the indicated primitive as an [MLBlock Object from MLBlocks](https://MLBazaar.github.io/MLBlocks/api/mlblocks.html#mlblocks.MLBlock)
In this case, we will load the `mlprimitives.custom.feature_extraction.CategoricalEncoder`
primitive.
```python3
from mlprimitives import load_primitive
primitive = load_primitive('mlprimitives.custom.feature_extraction.CategoricalEncoder')
```
### 2. Load some data
The CategoricalEncoder is a transformation primitive which applies one-hot encoding to all the
categorical columns of a `pandas.DataFrame`.
So, in order to be able to run our primitive, we will first load some data that contains
categorical columns.
This can be done with the `mlprimitives.datasets.load_census` function:
```python3
from mlprimitives.datasets import load_census
dataset = load_census()
```
This dataset object has an attribute `data` which contains a table with several categorical
columns.
We can have a look at this table by executing `dataset.data.head()`, which will return a
table like this:
```
0 1 2
age 39 50 38
workclass State-gov Self-emp-not-inc Private
fnlwgt 77516 83311 215646
education Bachelors Bachelors HS-grad
education-num 13 13 9
marital-status Never-married Married-civ-spouse Divorced
occupation Adm-clerical Exec-managerial Handlers-cleaners
relationship Not-in-family Husband Not-in-family
race White White White
sex Male Male Male
capital-gain 2174 0 0
capital-loss 0 0 0
hours-per-week 40 13 40
native-country United-States United-States United-States
```
### 3. Fit the primitive
In order to run our pipeline, we first need to fit it.
This is the process where it analyzes the data to detect which columns are categorical
This is done by calling its `fit` method and assing the `dataset.data` as `X`.
```python3
primitive.fit(X=dataset.data)
```
### 4. Produce results
Once the pipeline is fit, we can process the data by calling the `produce` method of the
primitive instance and passing agin the `data` as `X`.
```python3
transformed = primitive.produce(X=dataset.data)
```
After this is done, we can see how the transformed data contains the newly generated
one-hot vectors:
```
0 1 2 3 4
age 39 50 38 53 28
fnlwgt 77516 83311 215646 234721 338409
education-num 13 13 9 7 13
capital-gain 2174 0 0 0 0
capital-loss 0 0 0 0 0
hours-per-week 40 13 40 40 40
workclass= Private 0 0 1 1 1
workclass= Self-emp-not-inc 0 1 0 0 0
workclass= Local-gov 0 0 0 0 0
workclass= ? 0 0 0 0 0
workclass= State-gov 1 0 0 0 0
workclass= Self-emp-inc 0 0 0 0 0
... ... ... ... ... ...
```
## Tuning a Primitive
In this short tutorial we will teach you how to evaluate the performance of a primitive
and improve its performance by modifying its hyperparameters.
To do so, we will load a primitive that can learn from the transformed data that we just
generated and later on make predictions based on new data.
### 1. Load another primitive
Firs of all, we will load the `xgboost.XGBClassifier` primitive that we will use afterwards.
```python3
primitive = load_primitive('xgboost.XGBClassifier')
```
### 2. Split the dataset
Before being able to evaluate the primitive perfomance, we need to split the data in two
parts: train, which will be used for the primitive to learn, and test, which will be used
to make the predictions that later on will be evaluated.
In order to do this, we will get the first 75% of rows from the transformed data that we
obtained above and call it `X_train`, and then set the next 25% of rows as `X_test`.
```python3
train_size = int(len(transformed) * 0.75)
X_train = transformed.iloc[:train_size]
X_test = transformed.iloc[train_size:]
```
Similarly, we need to obtain the `y_train` and `y_test` variables containing the corresponding
output values.
```python3
y_train = dataset.target[:train_size]
y_test = dataset.target[train_size:]
```
### 3. Fit the new primitive
Once we have have splitted the data, we can fit the primitive by passing `X_train` and `y_train`
to its `fit` method.
```python3
primitive.fit(X=X_train, y=y_train)
```
### 4. Make predictions
Once the primitive has been fitted, we can produce predictions using the `X_test` data as input.
```python3
predictions = primitive.produce(X=X_test)
```
### 5. Evalute the performance
We can now evaluate how good the predictions from our primitive are by using the `score`
method from the `dataset` object on both the expected output and the real output from the
primitive:
```python3
dataset.score(y_test, predictions)
```
This will output a float value between 0 and 1 indicating how good the predicitons are, being
0 the worst score possible and 1 the best one.
In this case we will obtain a score around 0.866
### 6. Set new hyperparameter values
In order to improve the performance of our primitive we will try to modify a couple of its
hyperparameters.
First we will see which hyperparameter values the primitive has by calling its
`get_hyperparameters` method.
```python3
primitive.get_hyperparameters()
```
which will return a dictionary like this:
```python
{
"n_jobs": -1,
"n_estimators": 100,
"max_depth": 3,
"learning_rate": 0.1,
"gamma": 0,
"min_child_weight": 1
}
```
Next, we will see which are the valid values for each one of those hyperparameters by calling its
`get_tunable_hyperparameters` method:
```python3
primitive.get_tunable_hyperparameters()
```
For example, we will see that the `max_depth` hyperparameter has the following specification:
```python
{
"type": "int",
"default": 3,
"range": [
3,
10
]
}
```
Next, we will choose a valid value, for example 7, and set it into the pipeline using the
`set_hyperparameters` method:
```python3
primitive.set_hyperparameters({'max_depth': 7})
```
### 7. Re-evaluate the performance
Once the new hyperparameter value has been set, we repeat the fit/train/score cycle to
evaluate the performance of this new hyperparameter value:
```python3
primitive.fit(X=X_train, y=y_train)
predictions = primitive.produce(X=X_test)
dataset.score(y_test, predictions)
```
This time we should see that the performance has improved to a value around 0.724
## What's Next?
Do you want to [learn more about how the project](https://MLBazaar.github.io/MLPrimitives/getting_started/concepts.html),
about [how to contribute to it](https://MLBazaar.github.io/MLPrimitives/community/contributing.html)
or browse the [API Reference](https://MLBazaar.github.io/MLPrimitives/api/mlprimitives.html)?
Please check the corresponding sections of the [documentation](https://MLBazaar.github.io/MLPrimitives/)!
# History
## 0.3.5 - 2023-04-14
### General Imporvements
* Update `mlblocks` cap - [Issue #278](https://github.com/MLBazaar/MLPrimitives/issues/278) by @sarahmish
## 0.3.4 - 2023-01-24
### General Imporvements
* Update `mlblocks` cap - [Issue #277](https://github.com/MLBazaar/MLPrimitives/issues/277) by @sarahmish
## 0.3.3 - 2023-01-20
### General Imporvements
* Update dependencies - [Issue #276](https://github.com/MLBazaar/MLPrimitives/issues/276) by @sarahmish
### Adapter Improvements
* Building model within fit in keras adapter- [Issue #267](https://github.com/MLBazaar/MLPrimitives/issues/267) by @sarahmish
## 0.3.2 - 2021-11-09
### Adapter Improvements
* Inferring data shapes with single dimension for keras adapter - [Issue #265](https://github.com/MLBazaar/MLPrimitives/issues/265) by @sarahmish
## 0.3.1 - 2021-10-07
### Adapter Improvements
* Dynamic target_shape in keras adapter - [Issue #263](https://github.com/MLBazaar/MLPrimitives/issues/263) by @sarahmish
* Save keras primitives in Windows environment - [Issue #261](https://github.com/MLBazaar/MLPrimitives/issues/261) by @sarahmish
### General Imporvements
* Update TensorFlow and NumPy dependency - [Issue #259](https://github.com/MLBazaar/MLPrimitives/issues/259) by @sarahmish
## 0.3.0 - 2021-01-09
### New Primitives
* Add primitive `sklearn.naive_bayes.GaussianNB` - [Issue #242](https://github.com/MLBazaar/MLPrimitives/issues/242) by @sarahmish
* Add primitive `sklearn.linear_model.SGDClassifier` - [Issue #241](https://github.com/MLBazaar/MLPrimitives/issues/241) by @sarahmish
### Primitive Improvements
* Add offset to rolling_window_sequence primitive - [Issue #251](https://github.com/MLBazaar/MLPrimitives/issues/251) by @skyeeiskowitz
* Rename the time_index column to time - [Issue #252](https://github.com/MLBazaar/MLPrimitives/issues/252) by @pvk-developer
* Update featuretools dependency - [Issue #250](https://github.com/MLBazaar/MLPrimitives/issues/250) by @pvk-developer
### General Improvements
* Udpate dependencies and add python3.8 - [Issue #246](https://github.com/MLBazaar/MLPrimitives/issues/246) by @csala
* Drop Python35 - [Issue #244](https://github.com/MLBazaar/MLPrimitives/issues/244) by @csala
## 0.2.5 - 2020-07-29
### Primitive Improvements
* Accept timedelta `window_size` in `cutoff_window_sequences` - [Issue #239](https://github.com/MLBazaar/MLPrimitives/issues/239) by @joanvaquer
### Bug Fixes
* ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow via `pip install tensorflow` - [Issue #237](https://github.com/MLBazaar/MLPrimitives/issues/237) by @joanvaquer
### New Primitives
* Add `pandas.DataFrame.set_index` primitive - [Issue #222](https://github.com/MLBazaar/MLPrimitives/issues/222) by @JDTheRipperPC
## 0.2.4 - 2020-01-30
### New Primitives
* Add RangeScaler and RangeUnscaler primitives - [Issue #232](https://github.com/MLBazaar/MLPrimitives/issues/232) by @csala
### Primitive Improvements
* Extract input_shape from X in keras.Sequential - [Issue #223](https://github.com/MLBazaar/MLPrimitives/issues/223) by @csala
### Bug Fixes
* mlprimitives.custom.text.TextCleaner fails if text is empty - [Issue #228](https://github.com/MLBazaar/MLPrimitives/issues/228) by @csala
* Error when loading the reviews dataset - [Issue #230](https://github.com/MLBazaar/MLPrimitives/issues/230) by @csala
* Curate dependencies: specify an explicit prompt-toolkit version range - [Issue #224](https://github.com/MLBazaar/MLPrimitives/issues/224) by @csala
## 0.2.3 - 2019-11-14
### New Primitives
* Add primitive to make window_sequences based on cutoff times - [Issue #217](https://github.com/MLBazaar/MLPrimitives/issues/217) by @csala
* Create a keras LSTM based TimeSeriesClassifier primitive - [Issue #218](https://github.com/MLBazaar/MLPrimitives/issues/218) by @csala
* Add pandas DataFrame primitives - [Issue #214](https://github.com/MLBazaar/MLPrimitives/issues/214) by @csala
* Add featuretools.EntitySet.normalize_entity primitive - [Issue #209](https://github.com/MLBazaar/MLPrimitives/issues/209) by @csala
### Primitive Improvements
* Make featuretools.EntitySet.entity_from_dataframe entityset arg optional - [Issue #208](https://github.com/MLBazaar/MLPrimitives/issues/208) by @csala
* Add text regression dataset - [Issue #206](https://github.com/MLBazaar/MLPrimitives/issues/206) by @csala
### Bug Fixes
* pandas.DataFrame.resample crash when grouping by integer columns - [Issue #211](https://github.com/MLBazaar/MLPrimitives/issues/211) by @csala
## 0.2.2 - 2019-10-08
### New Primitives
* Add primitives for GAN based time-series anomaly detection - [Issue #200](https://github.com/MLBazaar/MLPrimitives/issues/200) by @AlexanderGeiger
* Add `numpy.reshape` and `numpy.ravel` primitives - [Issue #197](https://github.com/MLBazaar/MLPrimitives/issues/197) by @AlexanderGeiger
* Add feature selection primitive based on Lasso - [Issue #194](https://github.com/MLBazaar/MLPrimitives/issues/194) by @csala
### Primitive Improvements
* `feature_extraction.CategoricalEncoder` support dtype category - [Issue #196](https://github.com/MLBazaar/MLPrimitives/issues/196) by @csala
## 0.2.1 - 2019-09-09
### New Primitives
* Timeseries Intervals to Mask Primitive - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
* Add new primitive: Arima model - [Issue #168](https://github.com/MLBazaar/MLPrimitives/issues/168) by @AlexanderGeiger
### Primitive Improvements
* Curate PCA primitive hyperparameters - [Issue #190](https://github.com/MLBazaar/MLPrimitives/issues/190) by @AlexanderGeiger
* Add option to drop rolling window sequences - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
### Bug Fixes
* scikit-image==0.14.3 crashes when installed on Mac - [Issue #188](https://github.com/MLBazaar/MLPrimitives/issues/188) by @csala
## 0.2.0
### New Features
* Publish the pipelines as an `entry_point`
[Issue #175](https://github.com/MLBazaar/MLPrimitives/issues/175) by @csala
### Primitive Improvements
* Improve pandas.DataFrame.resample primitive [Issue #177](https://github.com/MLBazaar/MLPrimitives/issues/177) by @csala
* Improve `feature_extractor` primitives [Issue #183](https://github.com/MLBazaar/MLPrimitives/issues/183) by @csala
* Improve `find_anomalies` primitive [Issue #180](https://github.com/MLBazaar/MLPrimitives/issues/180) by @AlexanderGeiger
### Bug Fixes
* Typo in the primitive keras.Sequential.LSTMTimeSeriesRegressor [Issue #176](https://github.com/MLBazaar/MLPrimitives/issues/176) by @DanielCalvoCerezo
## 0.1.10
### New Features
* Add function to run primitives without a pipeline [Issue #43](https://github.com/MLBazaar/MLPrimitives/issues/43) by @csala
### New Pipelines
* Add pipelines for all the MLBlocks examples [Issue #162](https://github.com/MLBazaar/MLPrimitives/issues/162) by @csala
### Primitive Improvements
* Add Early Stopping to `keras.Sequential.LSTMTimeSeriesRegressor` primitive [Issue #156](https://github.com/MLBazaar/MLPrimitives/issues/156) by @csala
* Make FeatureExtractor primitives accept Numpy arrays [Issue #165](https://github.com/MLBazaar/MLPrimitives/issues/165) by @csala
* Add window size and pruning to the `timeseries_anomalies.find_anomalies` primitive [Issue #160](https://github.com/MLBazaar/MLPrimitives/issues/160) by @csala
## 0.1.9
### New Features
* Add a single table binary classification dataset [Issue #141](https://github.com/MLBazaar/MLPrimitives/issues/141) by @csala
### New Primitives
* Add Multilayer Perceptron (MLP) primitive for binary classification [Issue #140](https://github.com/MLBazaar/MLPrimitives/issues/140) by @Hector-hedb12
* Add primitive for Sequence classification with LSTM [Issue #150](https://github.com/MLBazaar/MLPrimitives/issues/150) by @Hector-hedb12
* Add VGG-like convnet primitive [Issue #149](https://github.com/MLBazaar/MLPrimitives/issues/149) by @Hector-hedb12
* Add Multilayer Perceptron (MLP) primitive for multi-class softmax classification [Issue #139](https://github.com/MLBazaar/MLPrimitives/issues/139) by @Hector-hedb12
* Add primitive to count feature matrix columns [Issue #146](https://github.com/MLBazaar/MLPrimitives/issues/146) by @csala
### Primitive Improvements
* Add additional fit and predict arguments to keras.Sequential [Issue #161](https://github.com/MLBazaar/MLPrimitives/issues/161) by @csala
* Add suport for keras.Sequential Callbacks [Issue #159](https://github.com/MLBazaar/MLPrimitives/issues/159) by @csala
* Add fixed hyperparam to control keras.Sequential verbosity [Issue #143](https://github.com/MLBazaar/MLPrimitives/issues/143) by @csala
## 0.1.8
### New Primitives
* mlprimitives.custom.timeseries_preprocessing.time_segments_average - [Issue #137](https://github.com/MLBazaar/MLPrimitives/issues/137)
### New Features
* Add target_index output in timseries_preprocessing.rolling_window_sequences - [Issue #136](https://github.com/MLBazaar/MLPrimitives/issues/136)
## 0.1.7
### General Improvements
* Validate JSON format in `make lint` - [Issue #133](https://github.com/MLBazaar/MLPrimitives/issues/133)
* Add demo datasets - [Issue #131](https://github.com/MLBazaar/MLPrimitives/issues/131)
* Improve featuretools.dfs primitive - [Issue #127](https://github.com/MLBazaar/MLPrimitives/issues/127)
### New Primitives
* pandas.DataFrame.resample - [Issue #123](https://github.com/MLBazaar/MLPrimitives/issues/123)
* pandas.DataFrame.unstack - [Issue #124](https://github.com/MLBazaar/MLPrimitives/issues/124)
* featuretools.EntitySet.add_relationship - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
* featuretools.EntitySet.entity_from_dataframe - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
### Bug Fixes
* Bug in timeseries_anomalies.py - [Issue #119](https://github.com/MLBazaar/MLPrimitives/issues/119)
## 0.1.6
### General Improvements
* Add Contributing Documentation
* Remove upper bound in pandas version given new release of `featuretools` v0.6.1
* Improve LSTMTimeSeriesRegressor hyperparameters
### New Primitives
* mlprimitives.candidates.dsp.SpectralMask
* mlprimitives.custom.timeseries_anomalies.find_anomalies
* mlprimitives.custom.timeseries_anomalies.regression_errors
* mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences
* mlprimitives.custom.timeseries_preprocessing.time_segments_average
* sklearn.linear_model.ElasticNet
* sklearn.linear_model.Lars
* sklearn.linear_model.Lasso
* sklearn.linear_model.MultiTaskLasso
* sklearn.linear_model.Ridge
## 0.1.5
### New Primitives
* sklearn.impute.SimpleImputer
* sklearn.preprocessing.MinMaxScaler
* sklearn.preprocessing.MaxAbsScaler
* sklearn.preprocessing.RobustScaler
* sklearn.linear_model.LinearRegression
### General Improvements
* Separate curated from candidate primitives
* Setup `entry_points` in setup.py to improve compaitibility with MLBlocks
* Add a test-pipelines command to test all the existing pipelines
* Clean sklearn example pipelines
* Change the `author` entry to a `contributors` list
* Change the name of `mlblocks_primitives` folder
* Pip install `requirements_dev.txt` fail documentation
### Bug Fixes
* Fix LSTMTimeSeriesRegressor primitive. Issue #90
* Fix timeseries primitives. Issue #91
* Negative index anomalies in `timeseries_errors`. Issue #89
* Keep pandas version below 0.24.0. Issue #87
## 0.1.4
### New Primitives
* mlprimitives.timeseries primitives for timeseries data preprocessing
* mlprimitives.timeseres_error primitives for timeseries anomaly detection
* keras.Sequential.LSTMTimeSeriesRegressor
* sklearn.neighbors.KNeighbors Classifier and Regressor
* several sklearn.decomposition primitives
* several sklearn.ensemble primitives
### Bug Fixes
* Fix typo in mlprimitives.text.TextCleaner primitive
* Fix bug in index handling in featuretools.dfs primitive
* Fix bug in SingleLayerCNNImageClassifier annotation
* Remove old vlaidation tags from JSON annotations
## 0.1.3
### New Features
* Fix and re-enable featuretools.dfs primitive.
## 0.1.2
### New Features
* Add pipeline specification language and Evaluation utilities.
* Add pipelines for graph, text and tabular problems.
* New primitives ClassEncoder and ClassDecoder
* New primitives UniqueCounter and VocabularyCounter
### Bug Fixes
* Fix TrivialPredictor bug when working with numpy arrays
* Change XGB default learning rate and number of estimators
## 0.1.1
### New Features
* Add more keras.applications primitives.
* Add a Text Cleanup primitive.
### Bug Fixes
* Add keywords to `keras.preprocessing` primtives.
* Fix the `image_transform` method.
* Add `epoch` as a fixed hyperparameter for `keras.Sequential` primitives.
## 0.1.0
* First release on PyPI.
%package help
Summary: Development documents and examples for mlprimitives
Provides: python3-mlprimitives-doc
%description help
<p align="left">
<a href="https://dai.lids.mit.edu">
<img width=15% src="https://dai.lids.mit.edu/wp-content/uploads/2018/06/Logo_DAI_highres.png" alt="DAI-Lab" />
</a>
<i>An Open Source Project from the <a href="https://dai.lids.mit.edu">Data to AI Lab, at MIT</a></i>
</p>
[](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
[](https://pypi.python.org/pypi/mlprimitives)
[](https://github.com/MLBazaar/MLPrimitives/actions?query=workflow%3A%22Run+Tests%22+branch%3Amaster)
[](https://pepy.tech/project/mlprimitives)
[](https://mybinder.org/v2/gh/MLBazaar/MLBlocks/master?filepath=examples/tutorials)
# MLPrimitives
Pipelines and primitives for machine learning and data science.
* Documentation: https://MLBazaar.github.io/MLPrimitives
* Github: https://github.com/MLBazaar/MLPrimitives
* License: [MIT](https://github.com/MLBazaar/MLPrimitives/blob/master/LICENSE)
* Development Status: [Pre-Alpha](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
# Overview
This repository contains primitive annotations to be used by the MLBlocks library, as well as
the necessary Python code to make some of them fully compatible with the MLBlocks API requirements.
There is also a collection of custom primitives contributed directly to this library, which either
combine third party tools or implement new functionalities from scratch.
## Why did we create this library?
* Too many libraries in a fast growing field
* Huge societal need to build machine learning apps
* Domain expertise resides at several places (knowledge of math)
* No documented information about hyperparameters, behavior...
# Installation
## Requirements
**MLPrimitives** has been developed and tested on [Python 3.6, 3.7 and 3.8](https://www.python.org/downloads/)
Also, although it is not strictly required, the usage of a
[virtualenv](https://virtualenv.pypa.io/en/latest/) is highly recommended in order to avoid
interfering with other software installed in the system where **MLPrimitives** is run.
## Install with pip
The easiest and recommended way to install **MLPrimitives** is using [pip](https://pip.pypa.io/en/stable/):
```bash
pip install mlprimitives
```
This will pull and install the latest stable release from [PyPi](https://pypi.org/).
If you want to install from source or contribute to the project please read the
[Contributing Guide](https://MLBazaar.github.io/MLPrimitives/community/welcome.html).
# Quickstart
This section is a short series of tutorials to help you getting started with MLPrimitives.
In the following steps you will learn how to load and run a primitive on some data.
Later on you will learn how to evaluate and improve the performance of a primitive by tuning
its hyperparameters.
## Running a Primitive
In this first tutorial, we will be executing a single primitive for data transformation.
### 1. Load a Primitive
The first step in order to run a primitive is to load it.
This will be done using the `mlprimitives.load_primitive` function, which will
load the indicated primitive as an [MLBlock Object from MLBlocks](https://MLBazaar.github.io/MLBlocks/api/mlblocks.html#mlblocks.MLBlock)
In this case, we will load the `mlprimitives.custom.feature_extraction.CategoricalEncoder`
primitive.
```python3
from mlprimitives import load_primitive
primitive = load_primitive('mlprimitives.custom.feature_extraction.CategoricalEncoder')
```
### 2. Load some data
The CategoricalEncoder is a transformation primitive which applies one-hot encoding to all the
categorical columns of a `pandas.DataFrame`.
So, in order to be able to run our primitive, we will first load some data that contains
categorical columns.
This can be done with the `mlprimitives.datasets.load_census` function:
```python3
from mlprimitives.datasets import load_census
dataset = load_census()
```
This dataset object has an attribute `data` which contains a table with several categorical
columns.
We can have a look at this table by executing `dataset.data.head()`, which will return a
table like this:
```
0 1 2
age 39 50 38
workclass State-gov Self-emp-not-inc Private
fnlwgt 77516 83311 215646
education Bachelors Bachelors HS-grad
education-num 13 13 9
marital-status Never-married Married-civ-spouse Divorced
occupation Adm-clerical Exec-managerial Handlers-cleaners
relationship Not-in-family Husband Not-in-family
race White White White
sex Male Male Male
capital-gain 2174 0 0
capital-loss 0 0 0
hours-per-week 40 13 40
native-country United-States United-States United-States
```
### 3. Fit the primitive
In order to run our pipeline, we first need to fit it.
This is the process where it analyzes the data to detect which columns are categorical
This is done by calling its `fit` method and assing the `dataset.data` as `X`.
```python3
primitive.fit(X=dataset.data)
```
### 4. Produce results
Once the pipeline is fit, we can process the data by calling the `produce` method of the
primitive instance and passing agin the `data` as `X`.
```python3
transformed = primitive.produce(X=dataset.data)
```
After this is done, we can see how the transformed data contains the newly generated
one-hot vectors:
```
0 1 2 3 4
age 39 50 38 53 28
fnlwgt 77516 83311 215646 234721 338409
education-num 13 13 9 7 13
capital-gain 2174 0 0 0 0
capital-loss 0 0 0 0 0
hours-per-week 40 13 40 40 40
workclass= Private 0 0 1 1 1
workclass= Self-emp-not-inc 0 1 0 0 0
workclass= Local-gov 0 0 0 0 0
workclass= ? 0 0 0 0 0
workclass= State-gov 1 0 0 0 0
workclass= Self-emp-inc 0 0 0 0 0
... ... ... ... ... ...
```
## Tuning a Primitive
In this short tutorial we will teach you how to evaluate the performance of a primitive
and improve its performance by modifying its hyperparameters.
To do so, we will load a primitive that can learn from the transformed data that we just
generated and later on make predictions based on new data.
### 1. Load another primitive
Firs of all, we will load the `xgboost.XGBClassifier` primitive that we will use afterwards.
```python3
primitive = load_primitive('xgboost.XGBClassifier')
```
### 2. Split the dataset
Before being able to evaluate the primitive perfomance, we need to split the data in two
parts: train, which will be used for the primitive to learn, and test, which will be used
to make the predictions that later on will be evaluated.
In order to do this, we will get the first 75% of rows from the transformed data that we
obtained above and call it `X_train`, and then set the next 25% of rows as `X_test`.
```python3
train_size = int(len(transformed) * 0.75)
X_train = transformed.iloc[:train_size]
X_test = transformed.iloc[train_size:]
```
Similarly, we need to obtain the `y_train` and `y_test` variables containing the corresponding
output values.
```python3
y_train = dataset.target[:train_size]
y_test = dataset.target[train_size:]
```
### 3. Fit the new primitive
Once we have have splitted the data, we can fit the primitive by passing `X_train` and `y_train`
to its `fit` method.
```python3
primitive.fit(X=X_train, y=y_train)
```
### 4. Make predictions
Once the primitive has been fitted, we can produce predictions using the `X_test` data as input.
```python3
predictions = primitive.produce(X=X_test)
```
### 5. Evalute the performance
We can now evaluate how good the predictions from our primitive are by using the `score`
method from the `dataset` object on both the expected output and the real output from the
primitive:
```python3
dataset.score(y_test, predictions)
```
This will output a float value between 0 and 1 indicating how good the predicitons are, being
0 the worst score possible and 1 the best one.
In this case we will obtain a score around 0.866
### 6. Set new hyperparameter values
In order to improve the performance of our primitive we will try to modify a couple of its
hyperparameters.
First we will see which hyperparameter values the primitive has by calling its
`get_hyperparameters` method.
```python3
primitive.get_hyperparameters()
```
which will return a dictionary like this:
```python
{
"n_jobs": -1,
"n_estimators": 100,
"max_depth": 3,
"learning_rate": 0.1,
"gamma": 0,
"min_child_weight": 1
}
```
Next, we will see which are the valid values for each one of those hyperparameters by calling its
`get_tunable_hyperparameters` method:
```python3
primitive.get_tunable_hyperparameters()
```
For example, we will see that the `max_depth` hyperparameter has the following specification:
```python
{
"type": "int",
"default": 3,
"range": [
3,
10
]
}
```
Next, we will choose a valid value, for example 7, and set it into the pipeline using the
`set_hyperparameters` method:
```python3
primitive.set_hyperparameters({'max_depth': 7})
```
### 7. Re-evaluate the performance
Once the new hyperparameter value has been set, we repeat the fit/train/score cycle to
evaluate the performance of this new hyperparameter value:
```python3
primitive.fit(X=X_train, y=y_train)
predictions = primitive.produce(X=X_test)
dataset.score(y_test, predictions)
```
This time we should see that the performance has improved to a value around 0.724
## What's Next?
Do you want to [learn more about how the project](https://MLBazaar.github.io/MLPrimitives/getting_started/concepts.html),
about [how to contribute to it](https://MLBazaar.github.io/MLPrimitives/community/contributing.html)
or browse the [API Reference](https://MLBazaar.github.io/MLPrimitives/api/mlprimitives.html)?
Please check the corresponding sections of the [documentation](https://MLBazaar.github.io/MLPrimitives/)!
# History
## 0.3.5 - 2023-04-14
### General Imporvements
* Update `mlblocks` cap - [Issue #278](https://github.com/MLBazaar/MLPrimitives/issues/278) by @sarahmish
## 0.3.4 - 2023-01-24
### General Imporvements
* Update `mlblocks` cap - [Issue #277](https://github.com/MLBazaar/MLPrimitives/issues/277) by @sarahmish
## 0.3.3 - 2023-01-20
### General Imporvements
* Update dependencies - [Issue #276](https://github.com/MLBazaar/MLPrimitives/issues/276) by @sarahmish
### Adapter Improvements
* Building model within fit in keras adapter- [Issue #267](https://github.com/MLBazaar/MLPrimitives/issues/267) by @sarahmish
## 0.3.2 - 2021-11-09
### Adapter Improvements
* Inferring data shapes with single dimension for keras adapter - [Issue #265](https://github.com/MLBazaar/MLPrimitives/issues/265) by @sarahmish
## 0.3.1 - 2021-10-07
### Adapter Improvements
* Dynamic target_shape in keras adapter - [Issue #263](https://github.com/MLBazaar/MLPrimitives/issues/263) by @sarahmish
* Save keras primitives in Windows environment - [Issue #261](https://github.com/MLBazaar/MLPrimitives/issues/261) by @sarahmish
### General Imporvements
* Update TensorFlow and NumPy dependency - [Issue #259](https://github.com/MLBazaar/MLPrimitives/issues/259) by @sarahmish
## 0.3.0 - 2021-01-09
### New Primitives
* Add primitive `sklearn.naive_bayes.GaussianNB` - [Issue #242](https://github.com/MLBazaar/MLPrimitives/issues/242) by @sarahmish
* Add primitive `sklearn.linear_model.SGDClassifier` - [Issue #241](https://github.com/MLBazaar/MLPrimitives/issues/241) by @sarahmish
### Primitive Improvements
* Add offset to rolling_window_sequence primitive - [Issue #251](https://github.com/MLBazaar/MLPrimitives/issues/251) by @skyeeiskowitz
* Rename the time_index column to time - [Issue #252](https://github.com/MLBazaar/MLPrimitives/issues/252) by @pvk-developer
* Update featuretools dependency - [Issue #250](https://github.com/MLBazaar/MLPrimitives/issues/250) by @pvk-developer
### General Improvements
* Udpate dependencies and add python3.8 - [Issue #246](https://github.com/MLBazaar/MLPrimitives/issues/246) by @csala
* Drop Python35 - [Issue #244](https://github.com/MLBazaar/MLPrimitives/issues/244) by @csala
## 0.2.5 - 2020-07-29
### Primitive Improvements
* Accept timedelta `window_size` in `cutoff_window_sequences` - [Issue #239](https://github.com/MLBazaar/MLPrimitives/issues/239) by @joanvaquer
### Bug Fixes
* ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow via `pip install tensorflow` - [Issue #237](https://github.com/MLBazaar/MLPrimitives/issues/237) by @joanvaquer
### New Primitives
* Add `pandas.DataFrame.set_index` primitive - [Issue #222](https://github.com/MLBazaar/MLPrimitives/issues/222) by @JDTheRipperPC
## 0.2.4 - 2020-01-30
### New Primitives
* Add RangeScaler and RangeUnscaler primitives - [Issue #232](https://github.com/MLBazaar/MLPrimitives/issues/232) by @csala
### Primitive Improvements
* Extract input_shape from X in keras.Sequential - [Issue #223](https://github.com/MLBazaar/MLPrimitives/issues/223) by @csala
### Bug Fixes
* mlprimitives.custom.text.TextCleaner fails if text is empty - [Issue #228](https://github.com/MLBazaar/MLPrimitives/issues/228) by @csala
* Error when loading the reviews dataset - [Issue #230](https://github.com/MLBazaar/MLPrimitives/issues/230) by @csala
* Curate dependencies: specify an explicit prompt-toolkit version range - [Issue #224](https://github.com/MLBazaar/MLPrimitives/issues/224) by @csala
## 0.2.3 - 2019-11-14
### New Primitives
* Add primitive to make window_sequences based on cutoff times - [Issue #217](https://github.com/MLBazaar/MLPrimitives/issues/217) by @csala
* Create a keras LSTM based TimeSeriesClassifier primitive - [Issue #218](https://github.com/MLBazaar/MLPrimitives/issues/218) by @csala
* Add pandas DataFrame primitives - [Issue #214](https://github.com/MLBazaar/MLPrimitives/issues/214) by @csala
* Add featuretools.EntitySet.normalize_entity primitive - [Issue #209](https://github.com/MLBazaar/MLPrimitives/issues/209) by @csala
### Primitive Improvements
* Make featuretools.EntitySet.entity_from_dataframe entityset arg optional - [Issue #208](https://github.com/MLBazaar/MLPrimitives/issues/208) by @csala
* Add text regression dataset - [Issue #206](https://github.com/MLBazaar/MLPrimitives/issues/206) by @csala
### Bug Fixes
* pandas.DataFrame.resample crash when grouping by integer columns - [Issue #211](https://github.com/MLBazaar/MLPrimitives/issues/211) by @csala
## 0.2.2 - 2019-10-08
### New Primitives
* Add primitives for GAN based time-series anomaly detection - [Issue #200](https://github.com/MLBazaar/MLPrimitives/issues/200) by @AlexanderGeiger
* Add `numpy.reshape` and `numpy.ravel` primitives - [Issue #197](https://github.com/MLBazaar/MLPrimitives/issues/197) by @AlexanderGeiger
* Add feature selection primitive based on Lasso - [Issue #194](https://github.com/MLBazaar/MLPrimitives/issues/194) by @csala
### Primitive Improvements
* `feature_extraction.CategoricalEncoder` support dtype category - [Issue #196](https://github.com/MLBazaar/MLPrimitives/issues/196) by @csala
## 0.2.1 - 2019-09-09
### New Primitives
* Timeseries Intervals to Mask Primitive - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
* Add new primitive: Arima model - [Issue #168](https://github.com/MLBazaar/MLPrimitives/issues/168) by @AlexanderGeiger
### Primitive Improvements
* Curate PCA primitive hyperparameters - [Issue #190](https://github.com/MLBazaar/MLPrimitives/issues/190) by @AlexanderGeiger
* Add option to drop rolling window sequences - [Issue #186](https://github.com/MLBazaar/MLPrimitives/issues/186) by @AlexanderGeiger
### Bug Fixes
* scikit-image==0.14.3 crashes when installed on Mac - [Issue #188](https://github.com/MLBazaar/MLPrimitives/issues/188) by @csala
## 0.2.0
### New Features
* Publish the pipelines as an `entry_point`
[Issue #175](https://github.com/MLBazaar/MLPrimitives/issues/175) by @csala
### Primitive Improvements
* Improve pandas.DataFrame.resample primitive [Issue #177](https://github.com/MLBazaar/MLPrimitives/issues/177) by @csala
* Improve `feature_extractor` primitives [Issue #183](https://github.com/MLBazaar/MLPrimitives/issues/183) by @csala
* Improve `find_anomalies` primitive [Issue #180](https://github.com/MLBazaar/MLPrimitives/issues/180) by @AlexanderGeiger
### Bug Fixes
* Typo in the primitive keras.Sequential.LSTMTimeSeriesRegressor [Issue #176](https://github.com/MLBazaar/MLPrimitives/issues/176) by @DanielCalvoCerezo
## 0.1.10
### New Features
* Add function to run primitives without a pipeline [Issue #43](https://github.com/MLBazaar/MLPrimitives/issues/43) by @csala
### New Pipelines
* Add pipelines for all the MLBlocks examples [Issue #162](https://github.com/MLBazaar/MLPrimitives/issues/162) by @csala
### Primitive Improvements
* Add Early Stopping to `keras.Sequential.LSTMTimeSeriesRegressor` primitive [Issue #156](https://github.com/MLBazaar/MLPrimitives/issues/156) by @csala
* Make FeatureExtractor primitives accept Numpy arrays [Issue #165](https://github.com/MLBazaar/MLPrimitives/issues/165) by @csala
* Add window size and pruning to the `timeseries_anomalies.find_anomalies` primitive [Issue #160](https://github.com/MLBazaar/MLPrimitives/issues/160) by @csala
## 0.1.9
### New Features
* Add a single table binary classification dataset [Issue #141](https://github.com/MLBazaar/MLPrimitives/issues/141) by @csala
### New Primitives
* Add Multilayer Perceptron (MLP) primitive for binary classification [Issue #140](https://github.com/MLBazaar/MLPrimitives/issues/140) by @Hector-hedb12
* Add primitive for Sequence classification with LSTM [Issue #150](https://github.com/MLBazaar/MLPrimitives/issues/150) by @Hector-hedb12
* Add VGG-like convnet primitive [Issue #149](https://github.com/MLBazaar/MLPrimitives/issues/149) by @Hector-hedb12
* Add Multilayer Perceptron (MLP) primitive for multi-class softmax classification [Issue #139](https://github.com/MLBazaar/MLPrimitives/issues/139) by @Hector-hedb12
* Add primitive to count feature matrix columns [Issue #146](https://github.com/MLBazaar/MLPrimitives/issues/146) by @csala
### Primitive Improvements
* Add additional fit and predict arguments to keras.Sequential [Issue #161](https://github.com/MLBazaar/MLPrimitives/issues/161) by @csala
* Add suport for keras.Sequential Callbacks [Issue #159](https://github.com/MLBazaar/MLPrimitives/issues/159) by @csala
* Add fixed hyperparam to control keras.Sequential verbosity [Issue #143](https://github.com/MLBazaar/MLPrimitives/issues/143) by @csala
## 0.1.8
### New Primitives
* mlprimitives.custom.timeseries_preprocessing.time_segments_average - [Issue #137](https://github.com/MLBazaar/MLPrimitives/issues/137)
### New Features
* Add target_index output in timseries_preprocessing.rolling_window_sequences - [Issue #136](https://github.com/MLBazaar/MLPrimitives/issues/136)
## 0.1.7
### General Improvements
* Validate JSON format in `make lint` - [Issue #133](https://github.com/MLBazaar/MLPrimitives/issues/133)
* Add demo datasets - [Issue #131](https://github.com/MLBazaar/MLPrimitives/issues/131)
* Improve featuretools.dfs primitive - [Issue #127](https://github.com/MLBazaar/MLPrimitives/issues/127)
### New Primitives
* pandas.DataFrame.resample - [Issue #123](https://github.com/MLBazaar/MLPrimitives/issues/123)
* pandas.DataFrame.unstack - [Issue #124](https://github.com/MLBazaar/MLPrimitives/issues/124)
* featuretools.EntitySet.add_relationship - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
* featuretools.EntitySet.entity_from_dataframe - [Issue #126](https://github.com/MLBazaar/MLPrimitives/issues/126)
### Bug Fixes
* Bug in timeseries_anomalies.py - [Issue #119](https://github.com/MLBazaar/MLPrimitives/issues/119)
## 0.1.6
### General Improvements
* Add Contributing Documentation
* Remove upper bound in pandas version given new release of `featuretools` v0.6.1
* Improve LSTMTimeSeriesRegressor hyperparameters
### New Primitives
* mlprimitives.candidates.dsp.SpectralMask
* mlprimitives.custom.timeseries_anomalies.find_anomalies
* mlprimitives.custom.timeseries_anomalies.regression_errors
* mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences
* mlprimitives.custom.timeseries_preprocessing.time_segments_average
* sklearn.linear_model.ElasticNet
* sklearn.linear_model.Lars
* sklearn.linear_model.Lasso
* sklearn.linear_model.MultiTaskLasso
* sklearn.linear_model.Ridge
## 0.1.5
### New Primitives
* sklearn.impute.SimpleImputer
* sklearn.preprocessing.MinMaxScaler
* sklearn.preprocessing.MaxAbsScaler
* sklearn.preprocessing.RobustScaler
* sklearn.linear_model.LinearRegression
### General Improvements
* Separate curated from candidate primitives
* Setup `entry_points` in setup.py to improve compaitibility with MLBlocks
* Add a test-pipelines command to test all the existing pipelines
* Clean sklearn example pipelines
* Change the `author` entry to a `contributors` list
* Change the name of `mlblocks_primitives` folder
* Pip install `requirements_dev.txt` fail documentation
### Bug Fixes
* Fix LSTMTimeSeriesRegressor primitive. Issue #90
* Fix timeseries primitives. Issue #91
* Negative index anomalies in `timeseries_errors`. Issue #89
* Keep pandas version below 0.24.0. Issue #87
## 0.1.4
### New Primitives
* mlprimitives.timeseries primitives for timeseries data preprocessing
* mlprimitives.timeseres_error primitives for timeseries anomaly detection
* keras.Sequential.LSTMTimeSeriesRegressor
* sklearn.neighbors.KNeighbors Classifier and Regressor
* several sklearn.decomposition primitives
* several sklearn.ensemble primitives
### Bug Fixes
* Fix typo in mlprimitives.text.TextCleaner primitive
* Fix bug in index handling in featuretools.dfs primitive
* Fix bug in SingleLayerCNNImageClassifier annotation
* Remove old vlaidation tags from JSON annotations
## 0.1.3
### New Features
* Fix and re-enable featuretools.dfs primitive.
## 0.1.2
### New Features
* Add pipeline specification language and Evaluation utilities.
* Add pipelines for graph, text and tabular problems.
* New primitives ClassEncoder and ClassDecoder
* New primitives UniqueCounter and VocabularyCounter
### Bug Fixes
* Fix TrivialPredictor bug when working with numpy arrays
* Change XGB default learning rate and number of estimators
## 0.1.1
### New Features
* Add more keras.applications primitives.
* Add a Text Cleanup primitive.
### Bug Fixes
* Add keywords to `keras.preprocessing` primtives.
* Fix the `image_transform` method.
* Add `epoch` as a fixed hyperparameter for `keras.Sequential` primitives.
## 0.1.0
* First release on PyPI.
%prep
%autosetup -n mlprimitives-0.3.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mlprimitives -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.5-1
- Package Spec generated
|