1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
%global _empty_manifest_terminate_build 0
Name: python-mlregression
Version: 0.1.10
Release: 1
Summary: Machine learning regression off-the-shelf
License: MIT License
URL: https://github.com/muhlbach/mlregression
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ec/b8/85a0e6d41da0cc6934acc4fd78d72a1b8b32f32c3e19bd584b6d99c394bb/mlregression-0.1.10.tar.gz
BuildArch: noarch
%description
# *** ATTENTION ***
Don't immidiately run `pip install mlregression`. See Section _Installation_.
# Machine learning regression (mlregression)
Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.
Currently, the __fully__ implemented models include:
- Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
- Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
- Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)
_NB!_ When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed, e.g., simply set `estimator="LassoCV"` similar to Example 1.
Scikit-learn regressors (together with `XGBoost` and `LightGBM`) can be estimated by setting the `estimator`-argument equal to the name (string) as in Example 1 (`estimator="RandomForestRegressor"`).
Alternatively, one can provide an instance of an estimator, e.g., `estimator=RandomForestRegressor()`. Again, this is fully automated for most Scikit-learn regressors, but for non-standard methods, one would have to provide a parameter grid as well, e.g., `param_grid={...}`.
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
## Code dependencies
This code has the following dependencies:
- Python >=3.6
- numpy >=1.19
- pandas >=1.3
- scikit-learn >=1
- scikit-learn-intelex >= 2021.3
- daal >= 2021.3
- daal4py >= 2021.3
- tbb >= 2021.4
- xgboost >=1.5
- lightgbm >=3.2
## Installation
Before calling `pip install mlregression`, we recommend using `conda` to install the dependencies. In our experience, calling the following command works like a charm:
```
conda install -c conda-forge numpy">=1.19" pandas">=1.3" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.5" lightgbm">=3.2" --force-reinstall
```
After this, install `mlregression` by calling `pip install mlregression`.
Note that without installing the dependensies, the package will not work. As of now, it does not work when installing the dependensies via `pip install`. The reason is that we are using the Intel® Extension for Scikit-learn to massively speed up computations, but the dependensies are not properly installed via `pip install`.
## Usage
We demonstrate the use of __mlregression__ below, using random forests, xgboost, and lightGBM as underlying regressors.
```python
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
# This library
from mlregression.mlreg import MLRegressor
#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
n_features=10,
n_informative=5,
n_targets=1,
bias=0.0,
coef=False,
random_state=1991)
X_train, X_test, y_train, y_test = train_test_split(X, y)
#------------------------------------------------------------------------------
# Example 1: Prediction
#------------------------------------------------------------------------------
# Specify any of the following estimators:
"""
"LinearRegression",
"RidgeCV", "LassoCV", "ElasticNetCV",
"RandomForestRegressor","ExtraTreesRegressor", "GradientBoostingRegressor",
"XGBRegressor", "LGBMegressor",
"MLPRegressor",
"""
# For instance, pick "RandomForestRegressor"
estimator = "RandomForestRegressor"
# Note that the 'estimator' may also be an instance of a class, e.g., RandomForestRegressor(), conditional on being imported first, e.g. from sklearn.ensemble import RandomForestRegressor
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models') and the number of cross-validation folds ('n_cv_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2)
# Fit
mlreg.fit(X=X_train, y=y_train)
# Predict
y_hat = mlreg.predict(X=X_test)
# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_
# Compute the score
mlreg.score(X=X_test,y=y_test)
#------------------------------------------------------------------------------
# Example 2: Cross-fitting
#------------------------------------------------------------------------------
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models'), the number of cross-validation folds ('n_cv_folds'), AND the number of cross-fitting folds ('n_cf_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2,
n_cf_folds=2)
# Cross fit
mlreg.cross_fit(X=X_train, y=y_train)
# Extract in-sample that are estimated in an out-of-sample way (e.g., via cross-fitting)
y_hat = mlreg.y_pred_cf_
# Likewise, extract the residualized outcomes used in e.g., double machine learning. This is \tilde{Y} = Y - E[Y|X=x]
y_res = mlreg.y_res_cf_
```
<!-- ## Example
We provide an example script in `demo.py`. -->
%package -n python3-mlregression
Summary: Machine learning regression off-the-shelf
Provides: python-mlregression
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mlregression
# *** ATTENTION ***
Don't immidiately run `pip install mlregression`. See Section _Installation_.
# Machine learning regression (mlregression)
Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.
Currently, the __fully__ implemented models include:
- Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
- Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
- Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)
_NB!_ When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed, e.g., simply set `estimator="LassoCV"` similar to Example 1.
Scikit-learn regressors (together with `XGBoost` and `LightGBM`) can be estimated by setting the `estimator`-argument equal to the name (string) as in Example 1 (`estimator="RandomForestRegressor"`).
Alternatively, one can provide an instance of an estimator, e.g., `estimator=RandomForestRegressor()`. Again, this is fully automated for most Scikit-learn regressors, but for non-standard methods, one would have to provide a parameter grid as well, e.g., `param_grid={...}`.
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
## Code dependencies
This code has the following dependencies:
- Python >=3.6
- numpy >=1.19
- pandas >=1.3
- scikit-learn >=1
- scikit-learn-intelex >= 2021.3
- daal >= 2021.3
- daal4py >= 2021.3
- tbb >= 2021.4
- xgboost >=1.5
- lightgbm >=3.2
## Installation
Before calling `pip install mlregression`, we recommend using `conda` to install the dependencies. In our experience, calling the following command works like a charm:
```
conda install -c conda-forge numpy">=1.19" pandas">=1.3" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.5" lightgbm">=3.2" --force-reinstall
```
After this, install `mlregression` by calling `pip install mlregression`.
Note that without installing the dependensies, the package will not work. As of now, it does not work when installing the dependensies via `pip install`. The reason is that we are using the Intel® Extension for Scikit-learn to massively speed up computations, but the dependensies are not properly installed via `pip install`.
## Usage
We demonstrate the use of __mlregression__ below, using random forests, xgboost, and lightGBM as underlying regressors.
```python
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
# This library
from mlregression.mlreg import MLRegressor
#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
n_features=10,
n_informative=5,
n_targets=1,
bias=0.0,
coef=False,
random_state=1991)
X_train, X_test, y_train, y_test = train_test_split(X, y)
#------------------------------------------------------------------------------
# Example 1: Prediction
#------------------------------------------------------------------------------
# Specify any of the following estimators:
"""
"LinearRegression",
"RidgeCV", "LassoCV", "ElasticNetCV",
"RandomForestRegressor","ExtraTreesRegressor", "GradientBoostingRegressor",
"XGBRegressor", "LGBMegressor",
"MLPRegressor",
"""
# For instance, pick "RandomForestRegressor"
estimator = "RandomForestRegressor"
# Note that the 'estimator' may also be an instance of a class, e.g., RandomForestRegressor(), conditional on being imported first, e.g. from sklearn.ensemble import RandomForestRegressor
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models') and the number of cross-validation folds ('n_cv_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2)
# Fit
mlreg.fit(X=X_train, y=y_train)
# Predict
y_hat = mlreg.predict(X=X_test)
# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_
# Compute the score
mlreg.score(X=X_test,y=y_test)
#------------------------------------------------------------------------------
# Example 2: Cross-fitting
#------------------------------------------------------------------------------
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models'), the number of cross-validation folds ('n_cv_folds'), AND the number of cross-fitting folds ('n_cf_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2,
n_cf_folds=2)
# Cross fit
mlreg.cross_fit(X=X_train, y=y_train)
# Extract in-sample that are estimated in an out-of-sample way (e.g., via cross-fitting)
y_hat = mlreg.y_pred_cf_
# Likewise, extract the residualized outcomes used in e.g., double machine learning. This is \tilde{Y} = Y - E[Y|X=x]
y_res = mlreg.y_res_cf_
```
<!-- ## Example
We provide an example script in `demo.py`. -->
%package help
Summary: Development documents and examples for mlregression
Provides: python3-mlregression-doc
%description help
# *** ATTENTION ***
Don't immidiately run `pip install mlregression`. See Section _Installation_.
# Machine learning regression (mlregression)
Machine Learning Regression (mlregrresion) is an off-the-shelf implementation of the most popular ML methods that automatically takes care of fitting and parameter tuning.
Currently, the __fully__ implemented models include:
- Ensemble trees (Random forests, XGBoost, LightGBM, GradientBoostingRegressor, ExtraTreesRegressor)
- Penalized regression (Ridge, Lasso, ElasticNet, Lars, LassoLars)
- Neural nets (Simple neural nets with 1-5 hidden layers, rely activation, and early stopping)
_NB!_ When using penalized regressions, consider using the native CV-implementation from scikit-learn for speed, e.g., simply set `estimator="LassoCV"` similar to Example 1.
Scikit-learn regressors (together with `XGBoost` and `LightGBM`) can be estimated by setting the `estimator`-argument equal to the name (string) as in Example 1 (`estimator="RandomForestRegressor"`).
Alternatively, one can provide an instance of an estimator, e.g., `estimator=RandomForestRegressor()`. Again, this is fully automated for most Scikit-learn regressors, but for non-standard methods, one would have to provide a parameter grid as well, e.g., `param_grid={...}`.
Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!
Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)
## Code dependencies
This code has the following dependencies:
- Python >=3.6
- numpy >=1.19
- pandas >=1.3
- scikit-learn >=1
- scikit-learn-intelex >= 2021.3
- daal >= 2021.3
- daal4py >= 2021.3
- tbb >= 2021.4
- xgboost >=1.5
- lightgbm >=3.2
## Installation
Before calling `pip install mlregression`, we recommend using `conda` to install the dependencies. In our experience, calling the following command works like a charm:
```
conda install -c conda-forge numpy">=1.19" pandas">=1.3" scikit-learn">=1" scikit-learn-intelex">=2021.3" daal">=2021.3" daal4py">=2021.3" tbb">=2021.4" xgboost">=1.5" lightgbm">=3.2" --force-reinstall
```
After this, install `mlregression` by calling `pip install mlregression`.
Note that without installing the dependensies, the package will not work. As of now, it does not work when installing the dependensies via `pip install`. The reason is that we are using the Intel® Extension for Scikit-learn to massively speed up computations, but the dependensies are not properly installed via `pip install`.
## Usage
We demonstrate the use of __mlregression__ below, using random forests, xgboost, and lightGBM as underlying regressors.
```python
#------------------------------------------------------------------------------
# Libraries
#------------------------------------------------------------------------------
# Standard
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
# This library
from mlregression.mlreg import MLRegressor
#------------------------------------------------------------------------------
# Data
#------------------------------------------------------------------------------
# Generate data
X, y = make_regression(n_samples=500,
n_features=10,
n_informative=5,
n_targets=1,
bias=0.0,
coef=False,
random_state=1991)
X_train, X_test, y_train, y_test = train_test_split(X, y)
#------------------------------------------------------------------------------
# Example 1: Prediction
#------------------------------------------------------------------------------
# Specify any of the following estimators:
"""
"LinearRegression",
"RidgeCV", "LassoCV", "ElasticNetCV",
"RandomForestRegressor","ExtraTreesRegressor", "GradientBoostingRegressor",
"XGBRegressor", "LGBMegressor",
"MLPRegressor",
"""
# For instance, pick "RandomForestRegressor"
estimator = "RandomForestRegressor"
# Note that the 'estimator' may also be an instance of a class, e.g., RandomForestRegressor(), conditional on being imported first, e.g. from sklearn.ensemble import RandomForestRegressor
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models') and the number of cross-validation folds ('n_cv_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2)
# Fit
mlreg.fit(X=X_train, y=y_train)
# Predict
y_hat = mlreg.predict(X=X_test)
# Access all the usual attributes
mlreg.best_score_
mlreg.best_estimator_
# Compute the score
mlreg.score(X=X_test,y=y_test)
#------------------------------------------------------------------------------
# Example 2: Cross-fitting
#------------------------------------------------------------------------------
# Instantiate model and choose the number of parametrizations to examine using cross-validation ('max_n_models'), the number of cross-validation folds ('n_cv_folds'), AND the number of cross-fitting folds ('n_cf_folds')
mlreg = MLRegressor(estimator=estimator,
n_cv_folds=5,
max_n_models=2,
n_cf_folds=2)
# Cross fit
mlreg.cross_fit(X=X_train, y=y_train)
# Extract in-sample that are estimated in an out-of-sample way (e.g., via cross-fitting)
y_hat = mlreg.y_pred_cf_
# Likewise, extract the residualized outcomes used in e.g., double machine learning. This is \tilde{Y} = Y - E[Y|X=x]
y_res = mlreg.y_res_cf_
```
<!-- ## Example
We provide an example script in `demo.py`. -->
%prep
%autosetup -n mlregression-0.1.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mlregression -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.10-1
- Package Spec generated
|