summaryrefslogtreecommitdiff
path: root/python-mnist.spec
blob: 8044e249ef450c83e839ec5aa1eda56660259f4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%global _empty_manifest_terminate_build 0
Name:		python-mnist
Version:	0.2.2
Release:	1
Summary:	Python utilities to download and parse the MNIST dataset
License:	BSD
URL:		https://github.com/datapythonista/mnist
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/85/2f/2fe28e6a2e5053e7fd14084b76cf7b8bb5935c5ecb78618646ed692d70b0/mnist-0.2.2.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-mock

%description

The MNIST database is available at http://yann.lecun.com/exdb/mnist/

The MNIST database is a dataset of handwritten digits. It has 60,000
training samples, and 10,000 test samples. Each image is represented
by 28x28 pixels, each containing a value 0 - 255 with its grayscale value.

It is a subset of a larger set available from NIST. The digits have been
size-normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and
pattern recognition methods on real-world data while spending minimal
efforts on preprocessing and formatting.

There are four files available, which contain separately train and test,
and images and labels.

Thanks to Yann LeCun, Corinna Cortes, Christopher J.C. Burges.

mnist makes it easier to download and parse MNIST files.




%package -n python3-mnist
Summary:	Python utilities to download and parse the MNIST dataset
Provides:	python-mnist
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mnist

The MNIST database is available at http://yann.lecun.com/exdb/mnist/

The MNIST database is a dataset of handwritten digits. It has 60,000
training samples, and 10,000 test samples. Each image is represented
by 28x28 pixels, each containing a value 0 - 255 with its grayscale value.

It is a subset of a larger set available from NIST. The digits have been
size-normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and
pattern recognition methods on real-world data while spending minimal
efforts on preprocessing and formatting.

There are four files available, which contain separately train and test,
and images and labels.

Thanks to Yann LeCun, Corinna Cortes, Christopher J.C. Burges.

mnist makes it easier to download and parse MNIST files.




%package help
Summary:	Development documents and examples for mnist
Provides:	python3-mnist-doc
%description help

The MNIST database is available at http://yann.lecun.com/exdb/mnist/

The MNIST database is a dataset of handwritten digits. It has 60,000
training samples, and 10,000 test samples. Each image is represented
by 28x28 pixels, each containing a value 0 - 255 with its grayscale value.

It is a subset of a larger set available from NIST. The digits have been
size-normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and
pattern recognition methods on real-world data while spending minimal
efforts on preprocessing and formatting.

There are four files available, which contain separately train and test,
and images and labels.

Thanks to Yann LeCun, Corinna Cortes, Christopher J.C. Burges.

mnist makes it easier to download and parse MNIST files.




%prep
%autosetup -n mnist-0.2.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mnist -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1
- Package Spec generated