blob: 442fa7baa746889527eccd588d77f8eb92a18032 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
%global _empty_manifest_terminate_build 0
Name: python-MonsterLab
Version: 1.2.7
Release: 1
Summary: Monster Generator
License: Free for non-commercial use
URL: https://github.com/BrokenShell/MonsterLab
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1c/f0/d251b7300022e5fb1941f786d473211bf0c5d8e4758629515fbc7052f89e/MonsterLab-1.2.7.tar.gz
BuildArch: noarch
Requires: python3-pytz
%description
# MonsterLab
by Robert Sharp
## Monster Class
### Optional Inputs
It is recommended to pass all the optional arguments or none of them. For example,
a custom type requires a custom name.
- Name: Compound Gaussian Distribution -> String
- Derived from Type
- Multidimensional distribution of types and subtypes
- Type: Wide Flat Distribution -> String
- Demonic
- Devilkin
- Dragon
- Undead
- Elemental
- Fey
- Undead
- Level: Poisson Distribution -> Integer
- Range: [1..20]
- Most Common: [4..7] ~64%
- Mean: 6.001
- Median: 6
- Rarity: Linear Distribution [Rank 0..Rank 5] -> String
- Rank 0: 30.5% Very Common
- Rank 1: 25.0% Common
- Rank 2: 19.4% Uncommon
- Rank 3: 13.8% Rare
- Rank 4: 8.3% Epic
- Rank 5: 2.7% Legendary
### Derived Fields
- Damage: Compound Geometric Distribution with Linear Noise -> String
- Derived from Level and Rarity
- Health: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Energy: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Sanity: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Time Stamp: The Monster's Birthday -> String
### Example Monster
- Name: Revenant
- Type: Undead
- Level: 3
- Rarity: Rank 0
- Damage: 3d2+1
- Health: 6.35
- Energy: 5.78
- Sanity: 6.0
- Time Stamp: 2021-08-09 14:23:23
### Code Example
```
$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23
```
%package -n python3-MonsterLab
Summary: Monster Generator
Provides: python-MonsterLab
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-MonsterLab
# MonsterLab
by Robert Sharp
## Monster Class
### Optional Inputs
It is recommended to pass all the optional arguments or none of them. For example,
a custom type requires a custom name.
- Name: Compound Gaussian Distribution -> String
- Derived from Type
- Multidimensional distribution of types and subtypes
- Type: Wide Flat Distribution -> String
- Demonic
- Devilkin
- Dragon
- Undead
- Elemental
- Fey
- Undead
- Level: Poisson Distribution -> Integer
- Range: [1..20]
- Most Common: [4..7] ~64%
- Mean: 6.001
- Median: 6
- Rarity: Linear Distribution [Rank 0..Rank 5] -> String
- Rank 0: 30.5% Very Common
- Rank 1: 25.0% Common
- Rank 2: 19.4% Uncommon
- Rank 3: 13.8% Rare
- Rank 4: 8.3% Epic
- Rank 5: 2.7% Legendary
### Derived Fields
- Damage: Compound Geometric Distribution with Linear Noise -> String
- Derived from Level and Rarity
- Health: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Energy: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Sanity: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Time Stamp: The Monster's Birthday -> String
### Example Monster
- Name: Revenant
- Type: Undead
- Level: 3
- Rarity: Rank 0
- Damage: 3d2+1
- Health: 6.35
- Energy: 5.78
- Sanity: 6.0
- Time Stamp: 2021-08-09 14:23:23
### Code Example
```
$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23
```
%package help
Summary: Development documents and examples for MonsterLab
Provides: python3-MonsterLab-doc
%description help
# MonsterLab
by Robert Sharp
## Monster Class
### Optional Inputs
It is recommended to pass all the optional arguments or none of them. For example,
a custom type requires a custom name.
- Name: Compound Gaussian Distribution -> String
- Derived from Type
- Multidimensional distribution of types and subtypes
- Type: Wide Flat Distribution -> String
- Demonic
- Devilkin
- Dragon
- Undead
- Elemental
- Fey
- Undead
- Level: Poisson Distribution -> Integer
- Range: [1..20]
- Most Common: [4..7] ~64%
- Mean: 6.001
- Median: 6
- Rarity: Linear Distribution [Rank 0..Rank 5] -> String
- Rank 0: 30.5% Very Common
- Rank 1: 25.0% Common
- Rank 2: 19.4% Uncommon
- Rank 3: 13.8% Rare
- Rank 4: 8.3% Epic
- Rank 5: 2.7% Legendary
### Derived Fields
- Damage: Compound Geometric Distribution with Linear Noise -> String
- Derived from Level and Rarity
- Health: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Energy: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Sanity: Geometric Distribution with Gaussian Noise -> Float
- Derived from Level and Rarity
- Time Stamp: The Monster's Birthday -> String
### Example Monster
- Name: Revenant
- Type: Undead
- Level: 3
- Rarity: Rank 0
- Damage: 3d2+1
- Health: 6.35
- Energy: 5.78
- Sanity: 6.0
- Time Stamp: 2021-08-09 14:23:23
### Code Example
```
$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23
```
%prep
%autosetup -n MonsterLab-1.2.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-MonsterLab -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.7-1
- Package Spec generated
|