summaryrefslogtreecommitdiff
path: root/python-mordl.spec
blob: 1bdb44f094838cb11e3e61193b231ee530d00d69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
%global _empty_manifest_terminate_build 0
Name:		python-mordl
Version:	2.0.12
Release:	1
Summary:	Morphological parser (POS, lemmata, NER etc.)
License:	BSD
URL:		https://github.com/fostroll/mordl
Source0:	https://mirrors.aliyun.com/pypi/web/packages/d5/23/a0c98ba2d3f8e6866ee1fca6cd8df73e7d3f8982223a0e215b201f7552d5/mordl-2.0.12.tar.gz
BuildArch:	noarch

Requires:	python3-corpuscula
Requires:	python3-gensim
Requires:	python3-junky
Requires:	python3-morra
Requires:	python3-numpy
Requires:	python3-Levenshtein
Requires:	python3-sklearn
Requires:	python3-torch
Requires:	python3-transformers

%description
<h2 align="center">MorDL: Morphological Tagger (POS, lemmata, NER etc.)</h2>
<a name="start"></a>

[![PyPI Version](https://img.shields.io/pypi/v/mordl?color=blue)](https://pypi.org/project/mordl/)
[![Python Version](https://img.shields.io/pypi/pyversions/mordl?color=blue)](https://www.python.org/)
[![License: BSD-3](https://img.shields.io/badge/License-BSD-brightgreen.svg)](https://opensource.org/licenses/BSD-3-Clause)

***MorDL*** is a tool to organize the pipeline for complete morphological
sentence parsing (POS-tagging, lemmatization, morphological feature tagging)
and Named-entity recognition.

Scores (accuracy) on *SynTagRus* test dataset: UPOS: `99.35%`; FEATS: `98.87%`
(tokens), `99.31%` (tags); LEMMA: `99.50%`. In all experiments, we used
`seed=42`. Some other `seed` values may help to achive better results. Models'
hyperparameters are also allowed to tune.

The validation with the
[official evaluation script](http://universaldependencies.org/conll18/conll18_ud_eval.py)
of
[CoNLL 2018 Shared Task](https://universaldependencies.org/conll18/results.html):
* For the inference on the *SynTagRus* test corpus, when predicted fields were
emptied and all other fields were stayed intact, the scores are the same as
outlined above.
* The inference of UPOS - FEATS - LEMMA taggers applied serially resulted with
scores: UPOS: `99.35%`; UFeats: `98.36%`; AllTags: `98.21`; Lemmas: `98.88%`.

For completeness, we included that script in our distribution, so you can use
it for your model evaluation, too. To simplify it, we also made a wrapper 
[`mordl.conll18_ud_eval`](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#conll18)
for it.

## Installation

### pip

***MorDL*** supports *Python 3.6* and *Transformers 4.3.3* or later. To
install via *pip*, run:
```sh
$ pip install mordl
```

If you currently have a previous version of ***MorDL*** installed, run:
```sh
$ pip install mordl -U
```

### From Source

Alternatively, you can install ***MorDL*** from the source of this *git
repository*:
```sh
$ git clone https://github.com/fostroll/mordl.git
$ cd mordl
$ pip install -e .
```
This gives you access to examples that are not included in the *PyPI* package.

## Usage

Our taggers use separate models, so they can be used independently. But to
achieve best results FEATS tagger uses UPOS tags during training. And LEMMA
and NER taggers use both UPOS and FEATS tags. Thus, for a fully untagged
corpus, the tagging pipeline is serially applying the taggers, like shown
below (assuming that our goal is NER and we already have trained taggers of
all types):

```python
from mordl import UposTagger, FeatsTagger, NeTagger

tagger_u, tagger_f, tagger_n = UposTagger(), FeatsTagger(), NeTagger()
tagger_u.load('upos_model')
tagger_f.load('feats_model')
tagger_n.load('misc-ne_model')

tagger_n.predict(
    tagger_f.predict(
        tagger_u.predict('untagged.conllu')
    ), save_to='result.conllu'
)
```

Any tagger in our pipeline may be replaced with a better one if you have it.
The weakness of separate taggers is that they take more space. If all models
were created with BERT embeddings, and you load them in memory simultaneously,
they may eat up to 9Gb on GPU. If it does not fit to your GPU, during loading,
you can use params **device** and **dataset_device** to distribute your models
on various GPUs. Alternatively, if you need just to tag some corpus once, you
may load models serially:

```python
tagger = UposTagger()
tagger.load('upos_model')
tagger.predict('untagged.conllu', save_to='result_upos.conllu')
del tagger  # just for sure
tagger = FeatsTagger()
tagger.load('feats_model')
tagger.predict('result_upos.conllu', save_to='result_feats.conllu')
del tagger
tagger = NeTagger()
tagger_n.load('misc-ne_model')
tagger.predict('result_feats.conllu', save_to='result.conllu')
del tagger
```

Don't use identical names for input and output file names when you call the
`.predict()` methods. Normally, there will be no problem, because the methods
by default load all the input file in memory before tagging. But if the input
file is large, you may want to use the **split** parameter for the methods
handle the file by parts. In that case, saving of the first part of the
tagging data occurs before loading next. So, identical names will entail data
loss.

The training process is also simple. If you have training corpora and you
don't want any experiments, just run:

```python
from mordl import UposTagger

tagger = UposTagger()
tagger.load_train_corpus(train_corpus)
tagger.load_test_corpus(dev_corpus)

stat = tagger.train('upos_model', device='cuda:0',
                    stage3_params={'save_as': 'upos_bert_model'})
```

It is a training pipeline for the UPOS tagger; pipelines for other taggers are
identical.

For a more complete understanding of ***MorDL*** toolkit usage, refer to the
Python notebook with the pipeline example in the `examples` directory of the
***MorDL*** GitHub repository. Also, the detailed descriptions are available
in the docs:

[***MorDL*** Basics](https://github.com/fostroll/mordl/blob/master/doc/README_BASICS.md#start)

[Part of Speech Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_POS.md#start)

[Single Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEAT.md#start)

[Multiple Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEATS.md#start)

[Lemmata Prediction](https://github.com/fostroll/mordl/blob/master/doc/README_LEMMA.md#start)

[Named-entity Recognition](https://github.com/fostroll/mordl/blob/master/doc/README_NER.md#start)

[Supplements](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#start)

Also, you can find training pipelines for different taggers in our
[example notebook](https://github.com/fostroll/mordl/blob/master/examples/mordl.ipynb).

This project was developed with the focus on Russian language, but a few
nuances we use for it are unlikely to worsen the quality of processing other
languages.

***MorDL's*** supports
[*CoNLL-U*](https://universaldependencies.org/format.html) (if input/output is
a file), or
[*Parsed CoNLL-U*](https://github.com/fostroll/corpuscula/blob/master/doc/README_PARSED_CONLLU.md)
(if input/output is an object). Also, ***MorDL's*** allows
[***Corpuscula***'s corpora wrappers](https://github.com/fostroll/corpuscula/blob/master/doc/README_CORPORA.md)
as input.

## License

***MorDL*** is released under the BSD License. See the
[LICENSE](https://github.com/fostroll/mordl/blob/master/LICENSE) file for more
details.




%package -n python3-mordl
Summary:	Morphological parser (POS, lemmata, NER etc.)
Provides:	python-mordl
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mordl
<h2 align="center">MorDL: Morphological Tagger (POS, lemmata, NER etc.)</h2>
<a name="start"></a>

[![PyPI Version](https://img.shields.io/pypi/v/mordl?color=blue)](https://pypi.org/project/mordl/)
[![Python Version](https://img.shields.io/pypi/pyversions/mordl?color=blue)](https://www.python.org/)
[![License: BSD-3](https://img.shields.io/badge/License-BSD-brightgreen.svg)](https://opensource.org/licenses/BSD-3-Clause)

***MorDL*** is a tool to organize the pipeline for complete morphological
sentence parsing (POS-tagging, lemmatization, morphological feature tagging)
and Named-entity recognition.

Scores (accuracy) on *SynTagRus* test dataset: UPOS: `99.35%`; FEATS: `98.87%`
(tokens), `99.31%` (tags); LEMMA: `99.50%`. In all experiments, we used
`seed=42`. Some other `seed` values may help to achive better results. Models'
hyperparameters are also allowed to tune.

The validation with the
[official evaluation script](http://universaldependencies.org/conll18/conll18_ud_eval.py)
of
[CoNLL 2018 Shared Task](https://universaldependencies.org/conll18/results.html):
* For the inference on the *SynTagRus* test corpus, when predicted fields were
emptied and all other fields were stayed intact, the scores are the same as
outlined above.
* The inference of UPOS - FEATS - LEMMA taggers applied serially resulted with
scores: UPOS: `99.35%`; UFeats: `98.36%`; AllTags: `98.21`; Lemmas: `98.88%`.

For completeness, we included that script in our distribution, so you can use
it for your model evaluation, too. To simplify it, we also made a wrapper 
[`mordl.conll18_ud_eval`](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#conll18)
for it.

## Installation

### pip

***MorDL*** supports *Python 3.6* and *Transformers 4.3.3* or later. To
install via *pip*, run:
```sh
$ pip install mordl
```

If you currently have a previous version of ***MorDL*** installed, run:
```sh
$ pip install mordl -U
```

### From Source

Alternatively, you can install ***MorDL*** from the source of this *git
repository*:
```sh
$ git clone https://github.com/fostroll/mordl.git
$ cd mordl
$ pip install -e .
```
This gives you access to examples that are not included in the *PyPI* package.

## Usage

Our taggers use separate models, so they can be used independently. But to
achieve best results FEATS tagger uses UPOS tags during training. And LEMMA
and NER taggers use both UPOS and FEATS tags. Thus, for a fully untagged
corpus, the tagging pipeline is serially applying the taggers, like shown
below (assuming that our goal is NER and we already have trained taggers of
all types):

```python
from mordl import UposTagger, FeatsTagger, NeTagger

tagger_u, tagger_f, tagger_n = UposTagger(), FeatsTagger(), NeTagger()
tagger_u.load('upos_model')
tagger_f.load('feats_model')
tagger_n.load('misc-ne_model')

tagger_n.predict(
    tagger_f.predict(
        tagger_u.predict('untagged.conllu')
    ), save_to='result.conllu'
)
```

Any tagger in our pipeline may be replaced with a better one if you have it.
The weakness of separate taggers is that they take more space. If all models
were created with BERT embeddings, and you load them in memory simultaneously,
they may eat up to 9Gb on GPU. If it does not fit to your GPU, during loading,
you can use params **device** and **dataset_device** to distribute your models
on various GPUs. Alternatively, if you need just to tag some corpus once, you
may load models serially:

```python
tagger = UposTagger()
tagger.load('upos_model')
tagger.predict('untagged.conllu', save_to='result_upos.conllu')
del tagger  # just for sure
tagger = FeatsTagger()
tagger.load('feats_model')
tagger.predict('result_upos.conllu', save_to='result_feats.conllu')
del tagger
tagger = NeTagger()
tagger_n.load('misc-ne_model')
tagger.predict('result_feats.conllu', save_to='result.conllu')
del tagger
```

Don't use identical names for input and output file names when you call the
`.predict()` methods. Normally, there will be no problem, because the methods
by default load all the input file in memory before tagging. But if the input
file is large, you may want to use the **split** parameter for the methods
handle the file by parts. In that case, saving of the first part of the
tagging data occurs before loading next. So, identical names will entail data
loss.

The training process is also simple. If you have training corpora and you
don't want any experiments, just run:

```python
from mordl import UposTagger

tagger = UposTagger()
tagger.load_train_corpus(train_corpus)
tagger.load_test_corpus(dev_corpus)

stat = tagger.train('upos_model', device='cuda:0',
                    stage3_params={'save_as': 'upos_bert_model'})
```

It is a training pipeline for the UPOS tagger; pipelines for other taggers are
identical.

For a more complete understanding of ***MorDL*** toolkit usage, refer to the
Python notebook with the pipeline example in the `examples` directory of the
***MorDL*** GitHub repository. Also, the detailed descriptions are available
in the docs:

[***MorDL*** Basics](https://github.com/fostroll/mordl/blob/master/doc/README_BASICS.md#start)

[Part of Speech Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_POS.md#start)

[Single Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEAT.md#start)

[Multiple Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEATS.md#start)

[Lemmata Prediction](https://github.com/fostroll/mordl/blob/master/doc/README_LEMMA.md#start)

[Named-entity Recognition](https://github.com/fostroll/mordl/blob/master/doc/README_NER.md#start)

[Supplements](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#start)

Also, you can find training pipelines for different taggers in our
[example notebook](https://github.com/fostroll/mordl/blob/master/examples/mordl.ipynb).

This project was developed with the focus on Russian language, but a few
nuances we use for it are unlikely to worsen the quality of processing other
languages.

***MorDL's*** supports
[*CoNLL-U*](https://universaldependencies.org/format.html) (if input/output is
a file), or
[*Parsed CoNLL-U*](https://github.com/fostroll/corpuscula/blob/master/doc/README_PARSED_CONLLU.md)
(if input/output is an object). Also, ***MorDL's*** allows
[***Corpuscula***'s corpora wrappers](https://github.com/fostroll/corpuscula/blob/master/doc/README_CORPORA.md)
as input.

## License

***MorDL*** is released under the BSD License. See the
[LICENSE](https://github.com/fostroll/mordl/blob/master/LICENSE) file for more
details.




%package help
Summary:	Development documents and examples for mordl
Provides:	python3-mordl-doc
%description help
<h2 align="center">MorDL: Morphological Tagger (POS, lemmata, NER etc.)</h2>
<a name="start"></a>

[![PyPI Version](https://img.shields.io/pypi/v/mordl?color=blue)](https://pypi.org/project/mordl/)
[![Python Version](https://img.shields.io/pypi/pyversions/mordl?color=blue)](https://www.python.org/)
[![License: BSD-3](https://img.shields.io/badge/License-BSD-brightgreen.svg)](https://opensource.org/licenses/BSD-3-Clause)

***MorDL*** is a tool to organize the pipeline for complete morphological
sentence parsing (POS-tagging, lemmatization, morphological feature tagging)
and Named-entity recognition.

Scores (accuracy) on *SynTagRus* test dataset: UPOS: `99.35%`; FEATS: `98.87%`
(tokens), `99.31%` (tags); LEMMA: `99.50%`. In all experiments, we used
`seed=42`. Some other `seed` values may help to achive better results. Models'
hyperparameters are also allowed to tune.

The validation with the
[official evaluation script](http://universaldependencies.org/conll18/conll18_ud_eval.py)
of
[CoNLL 2018 Shared Task](https://universaldependencies.org/conll18/results.html):
* For the inference on the *SynTagRus* test corpus, when predicted fields were
emptied and all other fields were stayed intact, the scores are the same as
outlined above.
* The inference of UPOS - FEATS - LEMMA taggers applied serially resulted with
scores: UPOS: `99.35%`; UFeats: `98.36%`; AllTags: `98.21`; Lemmas: `98.88%`.

For completeness, we included that script in our distribution, so you can use
it for your model evaluation, too. To simplify it, we also made a wrapper 
[`mordl.conll18_ud_eval`](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#conll18)
for it.

## Installation

### pip

***MorDL*** supports *Python 3.6* and *Transformers 4.3.3* or later. To
install via *pip*, run:
```sh
$ pip install mordl
```

If you currently have a previous version of ***MorDL*** installed, run:
```sh
$ pip install mordl -U
```

### From Source

Alternatively, you can install ***MorDL*** from the source of this *git
repository*:
```sh
$ git clone https://github.com/fostroll/mordl.git
$ cd mordl
$ pip install -e .
```
This gives you access to examples that are not included in the *PyPI* package.

## Usage

Our taggers use separate models, so they can be used independently. But to
achieve best results FEATS tagger uses UPOS tags during training. And LEMMA
and NER taggers use both UPOS and FEATS tags. Thus, for a fully untagged
corpus, the tagging pipeline is serially applying the taggers, like shown
below (assuming that our goal is NER and we already have trained taggers of
all types):

```python
from mordl import UposTagger, FeatsTagger, NeTagger

tagger_u, tagger_f, tagger_n = UposTagger(), FeatsTagger(), NeTagger()
tagger_u.load('upos_model')
tagger_f.load('feats_model')
tagger_n.load('misc-ne_model')

tagger_n.predict(
    tagger_f.predict(
        tagger_u.predict('untagged.conllu')
    ), save_to='result.conllu'
)
```

Any tagger in our pipeline may be replaced with a better one if you have it.
The weakness of separate taggers is that they take more space. If all models
were created with BERT embeddings, and you load them in memory simultaneously,
they may eat up to 9Gb on GPU. If it does not fit to your GPU, during loading,
you can use params **device** and **dataset_device** to distribute your models
on various GPUs. Alternatively, if you need just to tag some corpus once, you
may load models serially:

```python
tagger = UposTagger()
tagger.load('upos_model')
tagger.predict('untagged.conllu', save_to='result_upos.conllu')
del tagger  # just for sure
tagger = FeatsTagger()
tagger.load('feats_model')
tagger.predict('result_upos.conllu', save_to='result_feats.conllu')
del tagger
tagger = NeTagger()
tagger_n.load('misc-ne_model')
tagger.predict('result_feats.conllu', save_to='result.conllu')
del tagger
```

Don't use identical names for input and output file names when you call the
`.predict()` methods. Normally, there will be no problem, because the methods
by default load all the input file in memory before tagging. But if the input
file is large, you may want to use the **split** parameter for the methods
handle the file by parts. In that case, saving of the first part of the
tagging data occurs before loading next. So, identical names will entail data
loss.

The training process is also simple. If you have training corpora and you
don't want any experiments, just run:

```python
from mordl import UposTagger

tagger = UposTagger()
tagger.load_train_corpus(train_corpus)
tagger.load_test_corpus(dev_corpus)

stat = tagger.train('upos_model', device='cuda:0',
                    stage3_params={'save_as': 'upos_bert_model'})
```

It is a training pipeline for the UPOS tagger; pipelines for other taggers are
identical.

For a more complete understanding of ***MorDL*** toolkit usage, refer to the
Python notebook with the pipeline example in the `examples` directory of the
***MorDL*** GitHub repository. Also, the detailed descriptions are available
in the docs:

[***MorDL*** Basics](https://github.com/fostroll/mordl/blob/master/doc/README_BASICS.md#start)

[Part of Speech Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_POS.md#start)

[Single Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEAT.md#start)

[Multiple Feature Tagging](https://github.com/fostroll/mordl/blob/master/doc/README_FEATS.md#start)

[Lemmata Prediction](https://github.com/fostroll/mordl/blob/master/doc/README_LEMMA.md#start)

[Named-entity Recognition](https://github.com/fostroll/mordl/blob/master/doc/README_NER.md#start)

[Supplements](https://github.com/fostroll/mordl/blob/master/doc/README_SUPPLEMENTS.md#start)

Also, you can find training pipelines for different taggers in our
[example notebook](https://github.com/fostroll/mordl/blob/master/examples/mordl.ipynb).

This project was developed with the focus on Russian language, but a few
nuances we use for it are unlikely to worsen the quality of processing other
languages.

***MorDL's*** supports
[*CoNLL-U*](https://universaldependencies.org/format.html) (if input/output is
a file), or
[*Parsed CoNLL-U*](https://github.com/fostroll/corpuscula/blob/master/doc/README_PARSED_CONLLU.md)
(if input/output is an object). Also, ***MorDL's*** allows
[***Corpuscula***'s corpora wrappers](https://github.com/fostroll/corpuscula/blob/master/doc/README_CORPORA.md)
as input.

## License

***MorDL*** is released under the BSD License. See the
[LICENSE](https://github.com/fostroll/mordl/blob/master/LICENSE) file for more
details.




%prep
%autosetup -n mordl-2.0.12

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mordl -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.12-1
- Package Spec generated