1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
%global _empty_manifest_terminate_build 0
Name: python-mpl-image-labeller
Version: 1.1.2
Release: 1
Summary: Use interactive matplotlib to label images for classification
License: BSD-3-Clause
URL: https://mpl-image-labeller.rtfd.io
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b2/a4/147e4bc6074e648908c10cf6b39ebd6dcd176752715825be2056c86efc01/mpl_image_labeller-1.1.2.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-black
Requires: python3-flake8
Requires: python3-flake8-docstrings
Requires: python3-ipython
Requires: python3-isort
Requires: python3-jedi
Requires: python3-mypy
Requires: python3-pre-commit
Requires: python3-pydocstyle
Requires: python3-pytest
Requires: python3-Sphinx
Requires: python3-jupyter-sphinx
Requires: python3-myst-nb
Requires: python3-numpydoc
Requires: python3-sphinx-book-theme
Requires: python3-sphinx-copybutton
Requires: python3-sphinx-panels
Requires: python3-sphinx-thebe
Requires: python3-sphinx-togglebutton
Requires: python3-pytest
%description
# mpl-image-labeller
[](https://mybinder.org/v2/gh/ianhi/mpl-image-labeller/main?urlpath=lab/tree/docs/examples)
[](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/ianhi/mpl-image-labeller/raw/master/LICENSE)
[](https://pypi.org/project/mpl-image-labeller)
[](https://python.org)
Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!
For more see the [documentation](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable).
## Install
```bash
pip install mpl-image-labeller
```
## Key features
- Simple interface
- Uses keys instead of mouse
- Only depends on Matplotlib
- Works anywhere - from inside Jupyter to any supported GUI framework
- Displays images with correct aspect ratio
- Easily configurable keymap
- Smart interactions with default Matplotlib keymap
- Callback System (see `examples/callbacks.py`)
**single class per image**

**multiple classes per image**

## Usage
```python
import matplotlib.pyplot as plt
import numpy as np
from mpl_image_labeller import image_labeller
images = np.random.randn(5, 10, 10)
labeller = image_labeller(
images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()
```
**accessing the axis**
You can further modify the image (e.g. add masks over them) by using the plotting methods on
axis object accessible by `labeller.ax`.
**Lazy Loading Images**
If you want to lazy load your images you can provide a function to give the images. This function should take
the integer `idx` as an argument and return the image that corresponds to that index. If you do this then you
must also provide `N_images` in the constructor to let the object know how many images it should expect. See `examples/lazy_loading.py` for an example.
### Controls
- `<-` move one image back
- `->` move one image forward
To label images use the keys defined in the `label_keymap` argument - default 0, 1, 2...
Get the labels by accessing the `labels` property.
### Overwriting default keymap
Matplotlib has default keybindings that it applied to all figures via `rcparams.keymap` that allow for actions such as `s` to save or `q` to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.
## Related Projects
This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below
projects implement varying degrees of complexity and/or additional features in different frameworks.
- https://github.com/wbwvos/pidgey
- https://github.com/agermanidis/pigeon
- https://github.com/Serhiy-Shekhovtsov/tkteach
- https://github.com/robertbrada/PyQt-image-annotation-tool
- https://github.com/Cartucho/OpenLabeling
%package -n python3-mpl-image-labeller
Summary: Use interactive matplotlib to label images for classification
Provides: python-mpl-image-labeller
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mpl-image-labeller
# mpl-image-labeller
[](https://mybinder.org/v2/gh/ianhi/mpl-image-labeller/main?urlpath=lab/tree/docs/examples)
[](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/ianhi/mpl-image-labeller/raw/master/LICENSE)
[](https://pypi.org/project/mpl-image-labeller)
[](https://python.org)
Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!
For more see the [documentation](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable).
## Install
```bash
pip install mpl-image-labeller
```
## Key features
- Simple interface
- Uses keys instead of mouse
- Only depends on Matplotlib
- Works anywhere - from inside Jupyter to any supported GUI framework
- Displays images with correct aspect ratio
- Easily configurable keymap
- Smart interactions with default Matplotlib keymap
- Callback System (see `examples/callbacks.py`)
**single class per image**

**multiple classes per image**

## Usage
```python
import matplotlib.pyplot as plt
import numpy as np
from mpl_image_labeller import image_labeller
images = np.random.randn(5, 10, 10)
labeller = image_labeller(
images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()
```
**accessing the axis**
You can further modify the image (e.g. add masks over them) by using the plotting methods on
axis object accessible by `labeller.ax`.
**Lazy Loading Images**
If you want to lazy load your images you can provide a function to give the images. This function should take
the integer `idx` as an argument and return the image that corresponds to that index. If you do this then you
must also provide `N_images` in the constructor to let the object know how many images it should expect. See `examples/lazy_loading.py` for an example.
### Controls
- `<-` move one image back
- `->` move one image forward
To label images use the keys defined in the `label_keymap` argument - default 0, 1, 2...
Get the labels by accessing the `labels` property.
### Overwriting default keymap
Matplotlib has default keybindings that it applied to all figures via `rcparams.keymap` that allow for actions such as `s` to save or `q` to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.
## Related Projects
This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below
projects implement varying degrees of complexity and/or additional features in different frameworks.
- https://github.com/wbwvos/pidgey
- https://github.com/agermanidis/pigeon
- https://github.com/Serhiy-Shekhovtsov/tkteach
- https://github.com/robertbrada/PyQt-image-annotation-tool
- https://github.com/Cartucho/OpenLabeling
%package help
Summary: Development documents and examples for mpl-image-labeller
Provides: python3-mpl-image-labeller-doc
%description help
# mpl-image-labeller
[](https://mybinder.org/v2/gh/ianhi/mpl-image-labeller/main?urlpath=lab/tree/docs/examples)
[](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable)
[](https://github.com/ianhi/mpl-image-labeller/raw/master/LICENSE)
[](https://pypi.org/project/mpl-image-labeller)
[](https://python.org)
Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!
For more see the [documentation](https://mpl-image-labeller.readthedocs.io/en/stable/?badge=stable).
## Install
```bash
pip install mpl-image-labeller
```
## Key features
- Simple interface
- Uses keys instead of mouse
- Only depends on Matplotlib
- Works anywhere - from inside Jupyter to any supported GUI framework
- Displays images with correct aspect ratio
- Easily configurable keymap
- Smart interactions with default Matplotlib keymap
- Callback System (see `examples/callbacks.py`)
**single class per image**

**multiple classes per image**

## Usage
```python
import matplotlib.pyplot as plt
import numpy as np
from mpl_image_labeller import image_labeller
images = np.random.randn(5, 10, 10)
labeller = image_labeller(
images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()
```
**accessing the axis**
You can further modify the image (e.g. add masks over them) by using the plotting methods on
axis object accessible by `labeller.ax`.
**Lazy Loading Images**
If you want to lazy load your images you can provide a function to give the images. This function should take
the integer `idx` as an argument and return the image that corresponds to that index. If you do this then you
must also provide `N_images` in the constructor to let the object know how many images it should expect. See `examples/lazy_loading.py` for an example.
### Controls
- `<-` move one image back
- `->` move one image forward
To label images use the keys defined in the `label_keymap` argument - default 0, 1, 2...
Get the labels by accessing the `labels` property.
### Overwriting default keymap
Matplotlib has default keybindings that it applied to all figures via `rcparams.keymap` that allow for actions such as `s` to save or `q` to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.
## Related Projects
This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below
projects implement varying degrees of complexity and/or additional features in different frameworks.
- https://github.com/wbwvos/pidgey
- https://github.com/agermanidis/pigeon
- https://github.com/Serhiy-Shekhovtsov/tkteach
- https://github.com/robertbrada/PyQt-image-annotation-tool
- https://github.com/Cartucho/OpenLabeling
%prep
%autosetup -n mpl-image-labeller-1.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mpl-image-labeller -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
- Package Spec generated
|