summaryrefslogtreecommitdiff
path: root/python-mse.spec
blob: 2e6701bf35cef7994b8445b6c22e4ee3f8a35163 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
%global _empty_manifest_terminate_build 0
Name:		python-mse
Version:	0.1.4
Release:	1
Summary:	Make Structs Easy (MSE)
License:	Apache license 2.0
URL:		https://github.com/fqaiser94/mse
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/66/14/eebbed44d2c1251d932d4986f60511eadd43284855652437387d98481f6b/mse-0.1.4.tar.gz
BuildArch:	noarch

Requires:	python3-pyspark

%description
This library adds `withField`, `withFieldRenamed`, and `dropFields` methods to the Column class allowing users to easily add, rename, and drop fields inside StructType columns. 
The signature and behaviour of these methods is intended to be similar to their Dataset equivalents, namely the `withColumn`, `withColumnRenamed`, and `drop` methods.

The methods themselves are backed by efficient Catalyst Expressions and as a result, should provide better performance than equivalent UDFs. 
While this library "monkey patches" the methods on to the Column class, 
there is an on-going effort to add these methods natively to the Column class in the Apache Spark SQL project. 
You can follow along with the progress of this initiative in [SPARK-22231](https://issues.apache.org/jira/browse/SPARK-22231).

If you find this project useful, please consider supporting it by giving a star!

# Supported Spark versions

MSE should work without any further requirements on Spark/PySpark 2.4.x. 
The library is available for Python 3.x.

# Installation

Stable releases of MSE are published to PyPi.
You will also need to provide your PySpark application/s with the path to the MSE jar which you can get from [here](https://search.maven.org/artifact/com.github.fqaiser94/mse_2.11).  
For example: 

```bash
pip install mse
curl https://repo1.maven.org/maven2/com/github/fqaiser94/mse_2.11/0.2.4/mse_2.11-0.2.4.jar --output mse.jar
pyspark --jars mse.jar
```

If you get errors like `TypeError: 'JavaPackage' object is not callable`, this usually indicates that you haven't 
provided PySpark with the correct path to the MSE jar.

# Usage 
To bring in to scope the (implicit) Column methods in Python, use:

```python3
from mse import *
```

You can now use these methods to manipulate fields in a StructType column: 

```python3
from pyspark.sql import *
from pyspark.sql.functions import *
from pyspark.sql.types import *
from mse import *

# Generate some example data
structLevel1 = spark.createDataFrame(
  sc.parallelize([Row(Row(1, None, 3))]),
  StructType([
    StructField("a", StructType([
      StructField("a", IntegerType()),
      StructField("b", IntegerType()),
      StructField("c", IntegerType())]))])).cache()

structLevel1.show()
# +-------+                                                                       
# |      a|
# +-------+
# |[1,, 3]|
# +-------+

structLevel1.printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- b: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  add new field to top level struct
structLevel1.withColumn("a", col("a").withField("d", lit(4))).show()
#  +----------+
#  |         a|
#  +----------+
#  |[1,, 3, 4]|
#  +----------+

#  replace field in top level struct
structLevel1.withColumn("a", col("a").withField("b", lit(2))).show()
#  +---------+
#  |        a|
#  +---------+
#  |[1, 2, 3]|
#  +---------+

#  rename field in top level struct
structLevel1.withColumn("a", col("a").withFieldRenamed("b", "z")).printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- z: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  drop field in top level struct
structLevel1.withColumn("a", col("a").dropFields("b")).show()
#  +------+
#  |     a|
#  +------+
#  |[1, 3]|
#  +------+
```

For more complicated examples, see the GitHub page. 



%package -n python3-mse
Summary:	Make Structs Easy (MSE)
Provides:	python-mse
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mse
This library adds `withField`, `withFieldRenamed`, and `dropFields` methods to the Column class allowing users to easily add, rename, and drop fields inside StructType columns. 
The signature and behaviour of these methods is intended to be similar to their Dataset equivalents, namely the `withColumn`, `withColumnRenamed`, and `drop` methods.

The methods themselves are backed by efficient Catalyst Expressions and as a result, should provide better performance than equivalent UDFs. 
While this library "monkey patches" the methods on to the Column class, 
there is an on-going effort to add these methods natively to the Column class in the Apache Spark SQL project. 
You can follow along with the progress of this initiative in [SPARK-22231](https://issues.apache.org/jira/browse/SPARK-22231).

If you find this project useful, please consider supporting it by giving a star!

# Supported Spark versions

MSE should work without any further requirements on Spark/PySpark 2.4.x. 
The library is available for Python 3.x.

# Installation

Stable releases of MSE are published to PyPi.
You will also need to provide your PySpark application/s with the path to the MSE jar which you can get from [here](https://search.maven.org/artifact/com.github.fqaiser94/mse_2.11).  
For example: 

```bash
pip install mse
curl https://repo1.maven.org/maven2/com/github/fqaiser94/mse_2.11/0.2.4/mse_2.11-0.2.4.jar --output mse.jar
pyspark --jars mse.jar
```

If you get errors like `TypeError: 'JavaPackage' object is not callable`, this usually indicates that you haven't 
provided PySpark with the correct path to the MSE jar.

# Usage 
To bring in to scope the (implicit) Column methods in Python, use:

```python3
from mse import *
```

You can now use these methods to manipulate fields in a StructType column: 

```python3
from pyspark.sql import *
from pyspark.sql.functions import *
from pyspark.sql.types import *
from mse import *

# Generate some example data
structLevel1 = spark.createDataFrame(
  sc.parallelize([Row(Row(1, None, 3))]),
  StructType([
    StructField("a", StructType([
      StructField("a", IntegerType()),
      StructField("b", IntegerType()),
      StructField("c", IntegerType())]))])).cache()

structLevel1.show()
# +-------+                                                                       
# |      a|
# +-------+
# |[1,, 3]|
# +-------+

structLevel1.printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- b: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  add new field to top level struct
structLevel1.withColumn("a", col("a").withField("d", lit(4))).show()
#  +----------+
#  |         a|
#  +----------+
#  |[1,, 3, 4]|
#  +----------+

#  replace field in top level struct
structLevel1.withColumn("a", col("a").withField("b", lit(2))).show()
#  +---------+
#  |        a|
#  +---------+
#  |[1, 2, 3]|
#  +---------+

#  rename field in top level struct
structLevel1.withColumn("a", col("a").withFieldRenamed("b", "z")).printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- z: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  drop field in top level struct
structLevel1.withColumn("a", col("a").dropFields("b")).show()
#  +------+
#  |     a|
#  +------+
#  |[1, 3]|
#  +------+
```

For more complicated examples, see the GitHub page. 



%package help
Summary:	Development documents and examples for mse
Provides:	python3-mse-doc
%description help
This library adds `withField`, `withFieldRenamed`, and `dropFields` methods to the Column class allowing users to easily add, rename, and drop fields inside StructType columns. 
The signature and behaviour of these methods is intended to be similar to their Dataset equivalents, namely the `withColumn`, `withColumnRenamed`, and `drop` methods.

The methods themselves are backed by efficient Catalyst Expressions and as a result, should provide better performance than equivalent UDFs. 
While this library "monkey patches" the methods on to the Column class, 
there is an on-going effort to add these methods natively to the Column class in the Apache Spark SQL project. 
You can follow along with the progress of this initiative in [SPARK-22231](https://issues.apache.org/jira/browse/SPARK-22231).

If you find this project useful, please consider supporting it by giving a star!

# Supported Spark versions

MSE should work without any further requirements on Spark/PySpark 2.4.x. 
The library is available for Python 3.x.

# Installation

Stable releases of MSE are published to PyPi.
You will also need to provide your PySpark application/s with the path to the MSE jar which you can get from [here](https://search.maven.org/artifact/com.github.fqaiser94/mse_2.11).  
For example: 

```bash
pip install mse
curl https://repo1.maven.org/maven2/com/github/fqaiser94/mse_2.11/0.2.4/mse_2.11-0.2.4.jar --output mse.jar
pyspark --jars mse.jar
```

If you get errors like `TypeError: 'JavaPackage' object is not callable`, this usually indicates that you haven't 
provided PySpark with the correct path to the MSE jar.

# Usage 
To bring in to scope the (implicit) Column methods in Python, use:

```python3
from mse import *
```

You can now use these methods to manipulate fields in a StructType column: 

```python3
from pyspark.sql import *
from pyspark.sql.functions import *
from pyspark.sql.types import *
from mse import *

# Generate some example data
structLevel1 = spark.createDataFrame(
  sc.parallelize([Row(Row(1, None, 3))]),
  StructType([
    StructField("a", StructType([
      StructField("a", IntegerType()),
      StructField("b", IntegerType()),
      StructField("c", IntegerType())]))])).cache()

structLevel1.show()
# +-------+                                                                       
# |      a|
# +-------+
# |[1,, 3]|
# +-------+

structLevel1.printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- b: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  add new field to top level struct
structLevel1.withColumn("a", col("a").withField("d", lit(4))).show()
#  +----------+
#  |         a|
#  +----------+
#  |[1,, 3, 4]|
#  +----------+

#  replace field in top level struct
structLevel1.withColumn("a", col("a").withField("b", lit(2))).show()
#  +---------+
#  |        a|
#  +---------+
#  |[1, 2, 3]|
#  +---------+

#  rename field in top level struct
structLevel1.withColumn("a", col("a").withFieldRenamed("b", "z")).printSchema()
#  root
#   |-- a: struct (nullable = true)
#   |    |-- a: integer (nullable = true)
#   |    |-- z: integer (nullable = true)
#   |    |-- c: integer (nullable = true)

#  drop field in top level struct
structLevel1.withColumn("a", col("a").dropFields("b")).show()
#  +------+
#  |     a|
#  +------+
#  |[1, 3]|
#  +------+
```

For more complicated examples, see the GitHub page. 



%prep
%autosetup -n mse-0.1.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mse -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.4-1
- Package Spec generated