summaryrefslogtreecommitdiff
path: root/python-mtcnn.spec
blob: 27e16697148c6105552e99b90ac6600ec2304520 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
%global _empty_manifest_terminate_build 0
Name:		python-mtcnn
Version:	0.1.1
Release:	1
Summary:	Multi-task Cascaded Convolutional Neural Networks for Face Detection, based on TensorFlow
License:	MIT
URL:		http://github.com/ipazc/mtcnn
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ef/11/d549caa104ac2a03b6ef32bfca841ebb04c99ddf704b197c272bcdec054d/mtcnn-0.1.1.tar.gz
BuildArch:	noarch

Requires:	python3-keras
Requires:	python3-opencv-python

%description
The following tables shows the benchmark of this mtcnn implementation running on an `Intel i7-3612QM CPU @ 2.10GHz <https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-3612QM+%40+2.10GHz>`_, with a **CPU-based** Tensorflow 1.4.1.
 - Pictures containing a single frontal face:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 460x259    | 119,140      | 0.118 seconds | 8.5 |
+------------+--------------+---------------+-----+
| 561x561    | 314,721      | 0.227 seconds | 4.5 |
+------------+--------------+---------------+-----+
| 667x1000   | 667,000      | 0.456 seconds | 2.2 |
+------------+--------------+---------------+-----+
| 1920x1200  | 2,304,000    | 1.093 seconds | 0.9 |
+------------+--------------+---------------+-----+
| 4799x3599  | 17,271,601   | 8.798 seconds | 0.1 |
+------------+--------------+---------------+-----+
 - Pictures containing 10 frontal faces:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 474x224    | 106,176      | 0.185 seconds | 5.4 |
+------------+--------------+---------------+-----+
| 736x348    | 256,128      | 0.290 seconds | 3.4 |
+------------+--------------+---------------+-----+
| 2100x994   | 2,087,400    | 1.286 seconds | 0.7 |
+------------+--------------+---------------+-----+
MODEL
#####
By default the MTCNN bundles a face detection weights model.
The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative
to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.
The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.
For more reference about the network definition, take a close look at the paper from *Zhang et al. (2016)* [ZHANG2016]_.
LICENSE
#######
`MIT License`_.

%package -n python3-mtcnn
Summary:	Multi-task Cascaded Convolutional Neural Networks for Face Detection, based on TensorFlow
Provides:	python-mtcnn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mtcnn
The following tables shows the benchmark of this mtcnn implementation running on an `Intel i7-3612QM CPU @ 2.10GHz <https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-3612QM+%40+2.10GHz>`_, with a **CPU-based** Tensorflow 1.4.1.
 - Pictures containing a single frontal face:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 460x259    | 119,140      | 0.118 seconds | 8.5 |
+------------+--------------+---------------+-----+
| 561x561    | 314,721      | 0.227 seconds | 4.5 |
+------------+--------------+---------------+-----+
| 667x1000   | 667,000      | 0.456 seconds | 2.2 |
+------------+--------------+---------------+-----+
| 1920x1200  | 2,304,000    | 1.093 seconds | 0.9 |
+------------+--------------+---------------+-----+
| 4799x3599  | 17,271,601   | 8.798 seconds | 0.1 |
+------------+--------------+---------------+-----+
 - Pictures containing 10 frontal faces:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 474x224    | 106,176      | 0.185 seconds | 5.4 |
+------------+--------------+---------------+-----+
| 736x348    | 256,128      | 0.290 seconds | 3.4 |
+------------+--------------+---------------+-----+
| 2100x994   | 2,087,400    | 1.286 seconds | 0.7 |
+------------+--------------+---------------+-----+
MODEL
#####
By default the MTCNN bundles a face detection weights model.
The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative
to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.
The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.
For more reference about the network definition, take a close look at the paper from *Zhang et al. (2016)* [ZHANG2016]_.
LICENSE
#######
`MIT License`_.

%package help
Summary:	Development documents and examples for mtcnn
Provides:	python3-mtcnn-doc
%description help
The following tables shows the benchmark of this mtcnn implementation running on an `Intel i7-3612QM CPU @ 2.10GHz <https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-3612QM+%40+2.10GHz>`_, with a **CPU-based** Tensorflow 1.4.1.
 - Pictures containing a single frontal face:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 460x259    | 119,140      | 0.118 seconds | 8.5 |
+------------+--------------+---------------+-----+
| 561x561    | 314,721      | 0.227 seconds | 4.5 |
+------------+--------------+---------------+-----+
| 667x1000   | 667,000      | 0.456 seconds | 2.2 |
+------------+--------------+---------------+-----+
| 1920x1200  | 2,304,000    | 1.093 seconds | 0.9 |
+------------+--------------+---------------+-----+
| 4799x3599  | 17,271,601   | 8.798 seconds | 0.1 |
+------------+--------------+---------------+-----+
 - Pictures containing 10 frontal faces:
+------------+--------------+---------------+-----+
| Image size | Total pixels | Process time  | FPS |
+============+==============+===============+=====+
| 474x224    | 106,176      | 0.185 seconds | 5.4 |
+------------+--------------+---------------+-----+
| 736x348    | 256,128      | 0.290 seconds | 3.4 |
+------------+--------------+---------------+-----+
| 2100x994   | 2,087,400    | 1.286 seconds | 0.7 |
+------------+--------------+---------------+-----+
MODEL
#####
By default the MTCNN bundles a face detection weights model.
The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative
to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.
The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.
For more reference about the network definition, take a close look at the paper from *Zhang et al. (2016)* [ZHANG2016]_.
LICENSE
#######
`MIT License`_.

%prep
%autosetup -n mtcnn-0.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mtcnn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1-1
- Package Spec generated