summaryrefslogtreecommitdiff
path: root/python-mtscomp.spec
blob: 3120d0b0c36bdc57b244d71b82931d4b4897dd2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
%global _empty_manifest_terminate_build 0
Name:		python-mtscomp
Version:	1.0.2
Release:	1
Summary:	Lossless compression for electrophysiology time-series
License:	BSD
URL:		https://github.com/int-brain-lab/mtscomp
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/2e/ef/365e2dd214155b06d22622b3278de769d20e9e1d201538a941d62b609248/mtscomp-1.0.2.tar.gz
BuildArch:	noarch


%description
# Multichannel time series lossless compression in Python

[![Build Status](https://travis-ci.org/int-brain-lab/mtscomp.svg?branch=master)](https://travis-ci.org/int-brain-lab/mtscomp)
[![Coverage Status](https://codecov.io/gh/int-brain-lab/mtscomp/branch/master/graph/badge.svg)](https://codecov.io/gh/int-brain-lab/mtscomp)

This library implements a simple lossless compression scheme adapted to time-dependent high-frequency, high-dimensional signals. It is being developed within the [International Brain Laboratory](https://www.internationalbrainlab.com/) with the aim of being the compression library used for all large-scale electrophysiological recordings based on Neuropixels. The signals are typically recorded at 30 kHz and 10 bit depth, and contain several hundreds of channels.


## Compression scheme

The requested features for the compression scheme were as follows:

* Lossless compression only (one should retrieve byte-to-byte exact decompressed data).
* Written in pure Python (no C extensions) with minimal dependencies so as to simplify distribution.
* Scalable to large sample rates, large number of channels, long recording time.
* Faster than real time (i.e. it should take less time to compress than to record).
* Multithreaded so as to leverage multiple CPU cores.
* On-the-fly decompression and random read accesses.
* As simple as possible.

The compression scheme is the following:

* The data is split into chunks along the time axis.
* The time differences are computed for all channels.
* These time differences are compressed with zlib.
* The compressed chunks (and initial values of each chunk) are appended in a binary file.
* Metadata about the compression, including the chunk offsets within the compressed binary file, are saved in a secondary JSON file.

Saving the offsets allows for on-the-fly decompression and random data access: one simply has to determine which chunks should be loaded, and load them directly from the compressed binary file. The compressed chunks are decompressed with zlib, and the original data is recovered with a cumulative sum (the inverse of the time difference operation).

With large-scale neurophysiological recordings, we achieved a compression ratio of 3x.

As a consistency check, the compressed file is by default automatically and transparently decompressed and compared to the original file on a byte-per-byte basis.


## Dependencies

* Python 3.7+
* NumPy
* tqdm [for the progress bar]

For development only:

* flake8
* pytest
* pytest-cov
* coverage


## Installation

```
pip install mtscomp
```


## Command-line interface

Example:

```bash
# Compression: specify the number of channels, sample rate, dtype, optionally save the parameters
# as default in ~/.mtscomp with --set-default
mtscomp data.bin -n 385 -s 30000 -d int16 [--set-default]
# Decompression
mtsdecomp data.cbin -o data.decomp.bin
```

Usage:

```
usage: mtscomp [-h] [-d DTYPE] [-s SAMPLE_RATE] [-n N_CHANNELS] [-p CPUS]
               [-c CHUNK] [-nc] [-v] [--set-default]
               path [out] [outmeta]

Compress a raw binary file.

positional arguments:
  path                  input path of a raw binary file
  out                   output path of the compressed binary file (.cbin)
  outmeta               output path of the compression metadata JSON file
                        (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -d DTYPE, --dtype DTYPE
                        data type
  -s SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sample rate
  -n N_CHANNELS, --n-channels N_CHANNELS
                        number of channels
  -p CPUS, --cpus CPUS  number of CPUs to use
  -c CHUNK, --chunk CHUNK
                        chunk duration
  -nc, --no-check       no check
  -v, --debug           verbose
  --set-default         set the specified parameters as the default



usage: mtsdecomp [-h] [-o [OUT]] [--overwrite] [-nc] [-v] cdata [cmeta]

Decompress a raw binary file.

positional arguments:
  cdata                 path to the input compressed binary file (.cbin)
  cmeta                 path to the input compression metadata JSON file (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -o [OUT], --out [OUT]
                        path to the output decompressed file (.bin)
  --overwrite, -f       overwrite existing output
  -nc, --no-check       no check
  -v, --debug           verbose
```


## High-level API

Example:

```python
import numpy as np
from mtscomp.mtscomp import compress, decompress

# Compress a .bin file into a pair .cbin (compressed binary file) and .ch (JSON file).
compress('data.bin', 'data.cbin', 'data.ch', sample_rate=20000., n_channels=256, dtype=np.int16)
# Decompress a pair (.cbin, .ch) and return an object that can be sliced like a NumPy array.
arr = decompress('data.cbin', 'data.ch')
X = arr[start:end, :]  # decompress the data on the fly directly from the file on disk
arr.close()  # Close the file when done
```


## Low-level API

Example:

```python
import numpy as np
from mtscomp import Writer, Reader

# Define a writer to compress a flat raw binary file.
w = Writer(chunk_duration=1.)
# Open the file to compress.
w.open('data.bin', sample_rate=20000., n_channels=256, dtype=np.int16)
# Compress it into a compressed binary file, and a JSON header file.
w.write('data.cbin', 'data.ch')
w.close()

# Define a reader to decompress a compressed array.
r = Reader()
# Open the compressed dataset.
r.open('data.cbin', 'data.ch')
# The reader can be sliced as a NumPy array: decompression happens on the fly. Only chunks
# that need to be loaded are loaded and decompressed.
# Here, we load everything in memory.
array = r[:]
# Or we can decompress into a new raw binary file on disk.
r.tofile('data_dec.bin')
r.close()
```


## Implementation details

* **Multithreading**: since Python's zlib releases the GIL, the library uses multiple threads when compressing a file. The chunks are grouped in batches containing as many chunks as threads. After each batch, the chunks are written in the binary file in the right order (since the threads of the batch have no reason to finish in order).


## Performance

Performance on an Neuropixels dataset (30 kHz, 385 channels) and Intel 10-core i9-9820X CPU @ 3.3GHz:

* Compression ratio: -63% (compressed files are nearly 3x smaller)
* Compression time (20 threads): 88 MB/s, **4x faster than real time**
* Decompression time (single-threaded at the moment): 22 MB/s, **3x faster than real time**




%package -n python3-mtscomp
Summary:	Lossless compression for electrophysiology time-series
Provides:	python-mtscomp
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mtscomp
# Multichannel time series lossless compression in Python

[![Build Status](https://travis-ci.org/int-brain-lab/mtscomp.svg?branch=master)](https://travis-ci.org/int-brain-lab/mtscomp)
[![Coverage Status](https://codecov.io/gh/int-brain-lab/mtscomp/branch/master/graph/badge.svg)](https://codecov.io/gh/int-brain-lab/mtscomp)

This library implements a simple lossless compression scheme adapted to time-dependent high-frequency, high-dimensional signals. It is being developed within the [International Brain Laboratory](https://www.internationalbrainlab.com/) with the aim of being the compression library used for all large-scale electrophysiological recordings based on Neuropixels. The signals are typically recorded at 30 kHz and 10 bit depth, and contain several hundreds of channels.


## Compression scheme

The requested features for the compression scheme were as follows:

* Lossless compression only (one should retrieve byte-to-byte exact decompressed data).
* Written in pure Python (no C extensions) with minimal dependencies so as to simplify distribution.
* Scalable to large sample rates, large number of channels, long recording time.
* Faster than real time (i.e. it should take less time to compress than to record).
* Multithreaded so as to leverage multiple CPU cores.
* On-the-fly decompression and random read accesses.
* As simple as possible.

The compression scheme is the following:

* The data is split into chunks along the time axis.
* The time differences are computed for all channels.
* These time differences are compressed with zlib.
* The compressed chunks (and initial values of each chunk) are appended in a binary file.
* Metadata about the compression, including the chunk offsets within the compressed binary file, are saved in a secondary JSON file.

Saving the offsets allows for on-the-fly decompression and random data access: one simply has to determine which chunks should be loaded, and load them directly from the compressed binary file. The compressed chunks are decompressed with zlib, and the original data is recovered with a cumulative sum (the inverse of the time difference operation).

With large-scale neurophysiological recordings, we achieved a compression ratio of 3x.

As a consistency check, the compressed file is by default automatically and transparently decompressed and compared to the original file on a byte-per-byte basis.


## Dependencies

* Python 3.7+
* NumPy
* tqdm [for the progress bar]

For development only:

* flake8
* pytest
* pytest-cov
* coverage


## Installation

```
pip install mtscomp
```


## Command-line interface

Example:

```bash
# Compression: specify the number of channels, sample rate, dtype, optionally save the parameters
# as default in ~/.mtscomp with --set-default
mtscomp data.bin -n 385 -s 30000 -d int16 [--set-default]
# Decompression
mtsdecomp data.cbin -o data.decomp.bin
```

Usage:

```
usage: mtscomp [-h] [-d DTYPE] [-s SAMPLE_RATE] [-n N_CHANNELS] [-p CPUS]
               [-c CHUNK] [-nc] [-v] [--set-default]
               path [out] [outmeta]

Compress a raw binary file.

positional arguments:
  path                  input path of a raw binary file
  out                   output path of the compressed binary file (.cbin)
  outmeta               output path of the compression metadata JSON file
                        (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -d DTYPE, --dtype DTYPE
                        data type
  -s SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sample rate
  -n N_CHANNELS, --n-channels N_CHANNELS
                        number of channels
  -p CPUS, --cpus CPUS  number of CPUs to use
  -c CHUNK, --chunk CHUNK
                        chunk duration
  -nc, --no-check       no check
  -v, --debug           verbose
  --set-default         set the specified parameters as the default



usage: mtsdecomp [-h] [-o [OUT]] [--overwrite] [-nc] [-v] cdata [cmeta]

Decompress a raw binary file.

positional arguments:
  cdata                 path to the input compressed binary file (.cbin)
  cmeta                 path to the input compression metadata JSON file (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -o [OUT], --out [OUT]
                        path to the output decompressed file (.bin)
  --overwrite, -f       overwrite existing output
  -nc, --no-check       no check
  -v, --debug           verbose
```


## High-level API

Example:

```python
import numpy as np
from mtscomp.mtscomp import compress, decompress

# Compress a .bin file into a pair .cbin (compressed binary file) and .ch (JSON file).
compress('data.bin', 'data.cbin', 'data.ch', sample_rate=20000., n_channels=256, dtype=np.int16)
# Decompress a pair (.cbin, .ch) and return an object that can be sliced like a NumPy array.
arr = decompress('data.cbin', 'data.ch')
X = arr[start:end, :]  # decompress the data on the fly directly from the file on disk
arr.close()  # Close the file when done
```


## Low-level API

Example:

```python
import numpy as np
from mtscomp import Writer, Reader

# Define a writer to compress a flat raw binary file.
w = Writer(chunk_duration=1.)
# Open the file to compress.
w.open('data.bin', sample_rate=20000., n_channels=256, dtype=np.int16)
# Compress it into a compressed binary file, and a JSON header file.
w.write('data.cbin', 'data.ch')
w.close()

# Define a reader to decompress a compressed array.
r = Reader()
# Open the compressed dataset.
r.open('data.cbin', 'data.ch')
# The reader can be sliced as a NumPy array: decompression happens on the fly. Only chunks
# that need to be loaded are loaded and decompressed.
# Here, we load everything in memory.
array = r[:]
# Or we can decompress into a new raw binary file on disk.
r.tofile('data_dec.bin')
r.close()
```


## Implementation details

* **Multithreading**: since Python's zlib releases the GIL, the library uses multiple threads when compressing a file. The chunks are grouped in batches containing as many chunks as threads. After each batch, the chunks are written in the binary file in the right order (since the threads of the batch have no reason to finish in order).


## Performance

Performance on an Neuropixels dataset (30 kHz, 385 channels) and Intel 10-core i9-9820X CPU @ 3.3GHz:

* Compression ratio: -63% (compressed files are nearly 3x smaller)
* Compression time (20 threads): 88 MB/s, **4x faster than real time**
* Decompression time (single-threaded at the moment): 22 MB/s, **3x faster than real time**




%package help
Summary:	Development documents and examples for mtscomp
Provides:	python3-mtscomp-doc
%description help
# Multichannel time series lossless compression in Python

[![Build Status](https://travis-ci.org/int-brain-lab/mtscomp.svg?branch=master)](https://travis-ci.org/int-brain-lab/mtscomp)
[![Coverage Status](https://codecov.io/gh/int-brain-lab/mtscomp/branch/master/graph/badge.svg)](https://codecov.io/gh/int-brain-lab/mtscomp)

This library implements a simple lossless compression scheme adapted to time-dependent high-frequency, high-dimensional signals. It is being developed within the [International Brain Laboratory](https://www.internationalbrainlab.com/) with the aim of being the compression library used for all large-scale electrophysiological recordings based on Neuropixels. The signals are typically recorded at 30 kHz and 10 bit depth, and contain several hundreds of channels.


## Compression scheme

The requested features for the compression scheme were as follows:

* Lossless compression only (one should retrieve byte-to-byte exact decompressed data).
* Written in pure Python (no C extensions) with minimal dependencies so as to simplify distribution.
* Scalable to large sample rates, large number of channels, long recording time.
* Faster than real time (i.e. it should take less time to compress than to record).
* Multithreaded so as to leverage multiple CPU cores.
* On-the-fly decompression and random read accesses.
* As simple as possible.

The compression scheme is the following:

* The data is split into chunks along the time axis.
* The time differences are computed for all channels.
* These time differences are compressed with zlib.
* The compressed chunks (and initial values of each chunk) are appended in a binary file.
* Metadata about the compression, including the chunk offsets within the compressed binary file, are saved in a secondary JSON file.

Saving the offsets allows for on-the-fly decompression and random data access: one simply has to determine which chunks should be loaded, and load them directly from the compressed binary file. The compressed chunks are decompressed with zlib, and the original data is recovered with a cumulative sum (the inverse of the time difference operation).

With large-scale neurophysiological recordings, we achieved a compression ratio of 3x.

As a consistency check, the compressed file is by default automatically and transparently decompressed and compared to the original file on a byte-per-byte basis.


## Dependencies

* Python 3.7+
* NumPy
* tqdm [for the progress bar]

For development only:

* flake8
* pytest
* pytest-cov
* coverage


## Installation

```
pip install mtscomp
```


## Command-line interface

Example:

```bash
# Compression: specify the number of channels, sample rate, dtype, optionally save the parameters
# as default in ~/.mtscomp with --set-default
mtscomp data.bin -n 385 -s 30000 -d int16 [--set-default]
# Decompression
mtsdecomp data.cbin -o data.decomp.bin
```

Usage:

```
usage: mtscomp [-h] [-d DTYPE] [-s SAMPLE_RATE] [-n N_CHANNELS] [-p CPUS]
               [-c CHUNK] [-nc] [-v] [--set-default]
               path [out] [outmeta]

Compress a raw binary file.

positional arguments:
  path                  input path of a raw binary file
  out                   output path of the compressed binary file (.cbin)
  outmeta               output path of the compression metadata JSON file
                        (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -d DTYPE, --dtype DTYPE
                        data type
  -s SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sample rate
  -n N_CHANNELS, --n-channels N_CHANNELS
                        number of channels
  -p CPUS, --cpus CPUS  number of CPUs to use
  -c CHUNK, --chunk CHUNK
                        chunk duration
  -nc, --no-check       no check
  -v, --debug           verbose
  --set-default         set the specified parameters as the default



usage: mtsdecomp [-h] [-o [OUT]] [--overwrite] [-nc] [-v] cdata [cmeta]

Decompress a raw binary file.

positional arguments:
  cdata                 path to the input compressed binary file (.cbin)
  cmeta                 path to the input compression metadata JSON file (.ch)

optional arguments:
  -h, --help            show this help message and exit
  -o [OUT], --out [OUT]
                        path to the output decompressed file (.bin)
  --overwrite, -f       overwrite existing output
  -nc, --no-check       no check
  -v, --debug           verbose
```


## High-level API

Example:

```python
import numpy as np
from mtscomp.mtscomp import compress, decompress

# Compress a .bin file into a pair .cbin (compressed binary file) and .ch (JSON file).
compress('data.bin', 'data.cbin', 'data.ch', sample_rate=20000., n_channels=256, dtype=np.int16)
# Decompress a pair (.cbin, .ch) and return an object that can be sliced like a NumPy array.
arr = decompress('data.cbin', 'data.ch')
X = arr[start:end, :]  # decompress the data on the fly directly from the file on disk
arr.close()  # Close the file when done
```


## Low-level API

Example:

```python
import numpy as np
from mtscomp import Writer, Reader

# Define a writer to compress a flat raw binary file.
w = Writer(chunk_duration=1.)
# Open the file to compress.
w.open('data.bin', sample_rate=20000., n_channels=256, dtype=np.int16)
# Compress it into a compressed binary file, and a JSON header file.
w.write('data.cbin', 'data.ch')
w.close()

# Define a reader to decompress a compressed array.
r = Reader()
# Open the compressed dataset.
r.open('data.cbin', 'data.ch')
# The reader can be sliced as a NumPy array: decompression happens on the fly. Only chunks
# that need to be loaded are loaded and decompressed.
# Here, we load everything in memory.
array = r[:]
# Or we can decompress into a new raw binary file on disk.
r.tofile('data_dec.bin')
r.close()
```


## Implementation details

* **Multithreading**: since Python's zlib releases the GIL, the library uses multiple threads when compressing a file. The chunks are grouped in batches containing as many chunks as threads. After each batch, the chunks are written in the binary file in the right order (since the threads of the batch have no reason to finish in order).


## Performance

Performance on an Neuropixels dataset (30 kHz, 385 channels) and Intel 10-core i9-9820X CPU @ 3.3GHz:

* Compression ratio: -63% (compressed files are nearly 3x smaller)
* Compression time (20 threads): 88 MB/s, **4x faster than real time**
* Decompression time (single-threaded at the moment): 22 MB/s, **3x faster than real time**




%prep
%autosetup -n mtscomp-1.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mtscomp -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1
- Package Spec generated