summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-multihist.spec193
-rw-r--r--sources1
3 files changed, 195 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..996bdd4 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/multihist-0.6.5.tar.gz
diff --git a/python-multihist.spec b/python-multihist.spec
new file mode 100644
index 0000000..a760984
--- /dev/null
+++ b/python-multihist.spec
@@ -0,0 +1,193 @@
+%global _empty_manifest_terminate_build 0
+Name: python-multihist
+Version: 0.6.5
+Release: 1
+Summary: Convenience wrappers around numpy histograms
+License: MIT
+URL: https://github.com/jelleaalbers/multihist
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/73/df/bcbe4c72f03c4cb0f550329d6148628fe1f81f7da95d3c2afb867fb437f4/multihist-0.6.5.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+
+%description
+`https://github.com/JelleAalbers/multihist`
+Thin wrapper around numpy's histogram and histogramdd.
+Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
+with methods for adding new data to existing histograms, take averages, projecting, etc.
+For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
+For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
+**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
+Synopsis::
+ # Create histograms just like from numpy...
+ m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
+ # ...or add data incrementally:
+ m = Hist1d(bins=100, range=(-3, 4))
+ m.add(np.random.normal(0, 0.5, 10**4))
+ m.add(np.random.normal(2, 0.2, 10**3))
+ # Get the data back out:
+ print(m.histogram, m.bin_edges)
+ # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
+ plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
+ plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
+ plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
+ plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
+ plt.legend(loc='best')
+ plt.show()
+ # Slicing and arithmetic behave just like ordinary ndarrays
+ print("The fourth bin has %d entries" % m[3])
+ m[1:4] += 4 + 2 * m[-27:-24]
+ print("Now it has %d entries" % m[3])
+ # Of course I couldn't resist adding a canned plotting function:
+ m.plot()
+ plt.show()
+ # Create and show a 2d histogram. Axis names are optional.
+ m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
+ m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
+ m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
+ m2.plot()
+ plt.show()
+ # x and y projections return Hist1d objects
+ m2.projection('x').plot(label='x projection')
+ m2.projection(1).plot(label='y projection')
+ plt.legend()
+ plt.show()
+
+%package -n python3-multihist
+Summary: Convenience wrappers around numpy histograms
+Provides: python-multihist
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-multihist
+`https://github.com/JelleAalbers/multihist`
+Thin wrapper around numpy's histogram and histogramdd.
+Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
+with methods for adding new data to existing histograms, take averages, projecting, etc.
+For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
+For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
+**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
+Synopsis::
+ # Create histograms just like from numpy...
+ m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
+ # ...or add data incrementally:
+ m = Hist1d(bins=100, range=(-3, 4))
+ m.add(np.random.normal(0, 0.5, 10**4))
+ m.add(np.random.normal(2, 0.2, 10**3))
+ # Get the data back out:
+ print(m.histogram, m.bin_edges)
+ # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
+ plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
+ plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
+ plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
+ plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
+ plt.legend(loc='best')
+ plt.show()
+ # Slicing and arithmetic behave just like ordinary ndarrays
+ print("The fourth bin has %d entries" % m[3])
+ m[1:4] += 4 + 2 * m[-27:-24]
+ print("Now it has %d entries" % m[3])
+ # Of course I couldn't resist adding a canned plotting function:
+ m.plot()
+ plt.show()
+ # Create and show a 2d histogram. Axis names are optional.
+ m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
+ m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
+ m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
+ m2.plot()
+ plt.show()
+ # x and y projections return Hist1d objects
+ m2.projection('x').plot(label='x projection')
+ m2.projection(1).plot(label='y projection')
+ plt.legend()
+ plt.show()
+
+%package help
+Summary: Development documents and examples for multihist
+Provides: python3-multihist-doc
+%description help
+`https://github.com/JelleAalbers/multihist`
+Thin wrapper around numpy's histogram and histogramdd.
+Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
+with methods for adding new data to existing histograms, take averages, projecting, etc.
+For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
+For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
+**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
+Synopsis::
+ # Create histograms just like from numpy...
+ m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
+ # ...or add data incrementally:
+ m = Hist1d(bins=100, range=(-3, 4))
+ m.add(np.random.normal(0, 0.5, 10**4))
+ m.add(np.random.normal(2, 0.2, 10**3))
+ # Get the data back out:
+ print(m.histogram, m.bin_edges)
+ # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
+ plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
+ plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
+ plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
+ plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
+ plt.legend(loc='best')
+ plt.show()
+ # Slicing and arithmetic behave just like ordinary ndarrays
+ print("The fourth bin has %d entries" % m[3])
+ m[1:4] += 4 + 2 * m[-27:-24]
+ print("Now it has %d entries" % m[3])
+ # Of course I couldn't resist adding a canned plotting function:
+ m.plot()
+ plt.show()
+ # Create and show a 2d histogram. Axis names are optional.
+ m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
+ m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
+ m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
+ m2.plot()
+ plt.show()
+ # x and y projections return Hist1d objects
+ m2.projection('x').plot(label='x projection')
+ m2.projection(1).plot(label='y projection')
+ plt.legend()
+ plt.show()
+
+%prep
+%autosetup -n multihist-0.6.5
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-multihist -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.5-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..1987214
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+e411fd3cb227d2bc0066dcb1248c280f multihist-0.6.5.tar.gz