summaryrefslogtreecommitdiff
path: root/python-multihist.spec
blob: a760984dfbd47c28de95eddc7662e20f92596214 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
%global _empty_manifest_terminate_build 0
Name:		python-multihist
Version:	0.6.5
Release:	1
Summary:	Convenience wrappers around numpy histograms
License:	MIT
URL:		https://github.com/jelleaalbers/multihist
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/73/df/bcbe4c72f03c4cb0f550329d6148628fe1f81f7da95d3c2afb867fb437f4/multihist-0.6.5.tar.gz
BuildArch:	noarch

Requires:	python3-numpy

%description
`https://github.com/JelleAalbers/multihist`
Thin wrapper around numpy's histogram and histogramdd.
Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
with methods for adding new data to existing histograms, take averages, projecting, etc.
For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
Synopsis::
    # Create histograms just like from numpy...
    m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
    # ...or add data incrementally:
    m = Hist1d(bins=100, range=(-3, 4))
    m.add(np.random.normal(0, 0.5, 10**4))
    m.add(np.random.normal(2, 0.2, 10**3))
    # Get the data back out:
    print(m.histogram, m.bin_edges)
    # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
    plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
    plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
    plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
    plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
    plt.legend(loc='best')
    plt.show()
    # Slicing and arithmetic behave just like ordinary ndarrays
    print("The fourth bin has %d entries" % m[3])
    m[1:4] += 4 + 2 * m[-27:-24]
    print("Now it has %d entries" % m[3])
    # Of course I couldn't resist adding a canned plotting function:
    m.plot()
    plt.show()
    # Create and show a 2d histogram. Axis names are optional.
    m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
    m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
    m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
    m2.plot()
    plt.show()
    # x and y projections return Hist1d objects
    m2.projection('x').plot(label='x projection')
    m2.projection(1).plot(label='y projection')
    plt.legend()
    plt.show()

%package -n python3-multihist
Summary:	Convenience wrappers around numpy histograms
Provides:	python-multihist
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-multihist
`https://github.com/JelleAalbers/multihist`
Thin wrapper around numpy's histogram and histogramdd.
Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
with methods for adding new data to existing histograms, take averages, projecting, etc.
For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
Synopsis::
    # Create histograms just like from numpy...
    m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
    # ...or add data incrementally:
    m = Hist1d(bins=100, range=(-3, 4))
    m.add(np.random.normal(0, 0.5, 10**4))
    m.add(np.random.normal(2, 0.2, 10**3))
    # Get the data back out:
    print(m.histogram, m.bin_edges)
    # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
    plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
    plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
    plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
    plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
    plt.legend(loc='best')
    plt.show()
    # Slicing and arithmetic behave just like ordinary ndarrays
    print("The fourth bin has %d entries" % m[3])
    m[1:4] += 4 + 2 * m[-27:-24]
    print("Now it has %d entries" % m[3])
    # Of course I couldn't resist adding a canned plotting function:
    m.plot()
    plt.show()
    # Create and show a 2d histogram. Axis names are optional.
    m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
    m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
    m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
    m2.plot()
    plt.show()
    # x and y projections return Hist1d objects
    m2.projection('x').plot(label='x projection')
    m2.projection(1).plot(label='y projection')
    plt.legend()
    plt.show()

%package help
Summary:	Development documents and examples for multihist
Provides:	python3-multihist-doc
%description help
`https://github.com/JelleAalbers/multihist`
Thin wrapper around numpy's histogram and histogramdd.
Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
with methods for adding new data to existing histograms, take averages, projecting, etc.
For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.
Synopsis::
    # Create histograms just like from numpy...
    m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)
    # ...or add data incrementally:
    m = Hist1d(bins=100, range=(-3, 4))
    m.add(np.random.normal(0, 0.5, 10**4))
    m.add(np.random.normal(2, 0.2, 10**3))
    # Get the data back out:
    print(m.histogram, m.bin_edges)
    # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
    plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
    plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
    plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
    plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
    plt.legend(loc='best')
    plt.show()
    # Slicing and arithmetic behave just like ordinary ndarrays
    print("The fourth bin has %d entries" % m[3])
    m[1:4] += 4 + 2 * m[-27:-24]
    print("Now it has %d entries" % m[3])
    # Of course I couldn't resist adding a canned plotting function:
    m.plot()
    plt.show()
    # Create and show a 2d histogram. Axis names are optional.
    m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
    m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
    m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
    m2.plot()
    plt.show()
    # x and y projections return Hist1d objects
    m2.projection('x').plot(label='x projection')
    m2.projection(1).plot(label='y projection')
    plt.legend()
    plt.show()

%prep
%autosetup -n multihist-0.6.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-multihist -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.5-1
- Package Spec generated