summaryrefslogtreecommitdiff
path: root/python-neptune-sklearn.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-neptune-sklearn.spec')
-rw-r--r--python-neptune-sklearn.spec314
1 files changed, 314 insertions, 0 deletions
diff --git a/python-neptune-sklearn.spec b/python-neptune-sklearn.spec
new file mode 100644
index 0000000..b0e5ee8
--- /dev/null
+++ b/python-neptune-sklearn.spec
@@ -0,0 +1,314 @@
+%global _empty_manifest_terminate_build 0
+Name: python-neptune-sklearn
+Version: 2.1.0
+Release: 1
+Summary: Neptune.ai scikit-learn integration library
+License: Apache-2.0
+URL: https://neptune.ai/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/eb/ce/8cd5c232fa15c62b6d15eee2560e046996c7031a4d433df900b96f3b14e3/neptune_sklearn-2.1.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-importlib-metadata
+Requires: python3-neptune
+Requires: python3-pre-commit
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-scikit-learn
+Requires: python3-scikit-plot
+Requires: python3-yellowbrick
+
+%description
+# Neptune + scikit-learn integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* classifier and regressor parameters,
+* pickled model,
+* test predictions,
+* test predictions probabilities,
+* test scores,
+* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
+* KMeans cluster labels and clustering visualizations,
+* metadata including git summary info,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
+*Confusion matrix logged to Neptune*
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/sklearn)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
+* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)
+
+## Example
+
+```
+# On the command line:
+pip install neptune-sklearn
+```
+
+```python
+# In Python, prepare a fitted estimator
+parameters = {
+ "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
+}
+
+estimator = ...
+estimator.fit(X_train, y_train)
+
+# Import Neptune and start a run
+import neptune
+
+run = neptune.init_run(
+ project="common/sklearn-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Log parameters and scores
+run["parameters"] = parameters
+
+y_pred = estimator.predict(X_test)
+
+run["scores/max_error"] = max_error(y_test, y_pred)
+run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
+run["scores/r2_score"] = r2_score(y_test, y_pred)
+
+# Stop the run
+run.stop()
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%package -n python3-neptune-sklearn
+Summary: Neptune.ai scikit-learn integration library
+Provides: python-neptune-sklearn
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-neptune-sklearn
+# Neptune + scikit-learn integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* classifier and regressor parameters,
+* pickled model,
+* test predictions,
+* test predictions probabilities,
+* test scores,
+* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
+* KMeans cluster labels and clustering visualizations,
+* metadata including git summary info,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
+*Confusion matrix logged to Neptune*
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/sklearn)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
+* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)
+
+## Example
+
+```
+# On the command line:
+pip install neptune-sklearn
+```
+
+```python
+# In Python, prepare a fitted estimator
+parameters = {
+ "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
+}
+
+estimator = ...
+estimator.fit(X_train, y_train)
+
+# Import Neptune and start a run
+import neptune
+
+run = neptune.init_run(
+ project="common/sklearn-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Log parameters and scores
+run["parameters"] = parameters
+
+y_pred = estimator.predict(X_test)
+
+run["scores/max_error"] = max_error(y_test, y_pred)
+run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
+run["scores/r2_score"] = r2_score(y_test, y_pred)
+
+# Stop the run
+run.stop()
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%package help
+Summary: Development documents and examples for neptune-sklearn
+Provides: python3-neptune-sklearn-doc
+%description help
+# Neptune + scikit-learn integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* classifier and regressor parameters,
+* pickled model,
+* test predictions,
+* test predictions probabilities,
+* test scores,
+* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
+* KMeans cluster labels and clustering visualizations,
+* metadata including git summary info,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
+*Confusion matrix logged to Neptune*
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/sklearn)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
+* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)
+
+## Example
+
+```
+# On the command line:
+pip install neptune-sklearn
+```
+
+```python
+# In Python, prepare a fitted estimator
+parameters = {
+ "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
+}
+
+estimator = ...
+estimator.fit(X_train, y_train)
+
+# Import Neptune and start a run
+import neptune
+
+run = neptune.init_run(
+ project="common/sklearn-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Log parameters and scores
+run["parameters"] = parameters
+
+y_pred = estimator.predict(X_test)
+
+run["scores/max_error"] = max_error(y_test, y_pred)
+run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
+run["scores/r2_score"] = r2_score(y_test, y_pred)
+
+# Stop the run
+run.stop()
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%prep
+%autosetup -n neptune-sklearn-2.1.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-neptune-sklearn -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
+- Package Spec generated