summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-15 06:59:21 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-15 06:59:21 +0000
commite7f2a22cc3e882977f70fc33ea772abeca0bfaef (patch)
treef42d6996cfe33a9d678d23a207eed4b2d0108143
parentb2fcb64c8b569997530085e177e77286f27b842a (diff)
automatic import of python-neptune-xgboost
-rw-r--r--.gitignore1
-rw-r--r--python-neptune-xgboost.spec338
-rw-r--r--sources1
3 files changed, 340 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..6da3e0c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/neptune_xgboost-1.1.1.tar.gz
diff --git a/python-neptune-xgboost.spec b/python-neptune-xgboost.spec
new file mode 100644
index 0000000..cc76dfa
--- /dev/null
+++ b/python-neptune-xgboost.spec
@@ -0,0 +1,338 @@
+%global _empty_manifest_terminate_build 0
+Name: python-neptune-xgboost
+Version: 1.1.1
+Release: 1
+Summary: Neptune.ai XGBoost integration library
+License: Apache-2.0
+URL: https://neptune.ai/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3c/1e/20ae6cd96fdece210b058f884cfc5f935d177b50c6d17376df985252f74e/neptune_xgboost-1.1.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-graphviz
+Requires: python3-importlib-metadata
+Requires: python3-matplotlib
+Requires: python3-neptune
+Requires: python3-pre-commit
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-xgboost
+
+%description
+# Neptune + XGBoost integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for XGBoost trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* metrics,
+* parameters,
+* learning rate,
+* pickled model,
+* visualizations (feature importance chart and tree visualizations),
+* hardware consumption (CPU, GPU, Memory),
+* stdout and stderr logs,
+* training code and Git commit information,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160614588-5d839a11-e2f9-4eed-a3d1-39314ebdb1ea.png)
+*Example dashboard with train-valid metrics and selected parameters*
+
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/xgboost)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/scripts/Neptune_XGBoost_train.py)
+* [Example of a run logged in the Neptune app](https://app.neptune.ai/o/common/org/xgboost-integration/e/XGBOOST-84/dashboard/train-e395296a-4f3d-4a58-ab88-6ef06bbac657)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/notebooks/Neptune_XGBoost.ipynb)
+
+## Example
+
+On the command line:
+
+```
+pip install xgboost>=1.3.0 neptune-xgboost
+```
+
+In Python:
+
+```python
+import neptune
+import xgboost as xgb
+from neptune.integrations.xgboost import NeptuneCallback
+
+# Start a run
+run = neptune.init_run(
+ project="common/xgboost-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Create a NeptuneCallback instance
+neptune_callback = NeptuneCallback(run=run, log_tree=[0, 1, 2, 3])
+
+# Prepare datasets
+...
+data_train = xgb.DMatrix(X_train, label=y_train)
+
+# Define model parameters
+model_params = {
+ "eta": 0.7,
+ "gamma": 0.001,
+ "max_depth": 9,
+ ...
+}
+
+# Train the model and log metadata to the run in Neptune
+xgb.train(
+ params=model_params,
+ dtrain=data_train,
+ callbacks=[neptune_callback],
+)
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%package -n python3-neptune-xgboost
+Summary: Neptune.ai XGBoost integration library
+Provides: python-neptune-xgboost
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-neptune-xgboost
+# Neptune + XGBoost integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for XGBoost trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* metrics,
+* parameters,
+* learning rate,
+* pickled model,
+* visualizations (feature importance chart and tree visualizations),
+* hardware consumption (CPU, GPU, Memory),
+* stdout and stderr logs,
+* training code and Git commit information,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160614588-5d839a11-e2f9-4eed-a3d1-39314ebdb1ea.png)
+*Example dashboard with train-valid metrics and selected parameters*
+
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/xgboost)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/scripts/Neptune_XGBoost_train.py)
+* [Example of a run logged in the Neptune app](https://app.neptune.ai/o/common/org/xgboost-integration/e/XGBOOST-84/dashboard/train-e395296a-4f3d-4a58-ab88-6ef06bbac657)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/notebooks/Neptune_XGBoost.ipynb)
+
+## Example
+
+On the command line:
+
+```
+pip install xgboost>=1.3.0 neptune-xgboost
+```
+
+In Python:
+
+```python
+import neptune
+import xgboost as xgb
+from neptune.integrations.xgboost import NeptuneCallback
+
+# Start a run
+run = neptune.init_run(
+ project="common/xgboost-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Create a NeptuneCallback instance
+neptune_callback = NeptuneCallback(run=run, log_tree=[0, 1, 2, 3])
+
+# Prepare datasets
+...
+data_train = xgb.DMatrix(X_train, label=y_train)
+
+# Define model parameters
+model_params = {
+ "eta": 0.7,
+ "gamma": 0.001,
+ "max_depth": 9,
+ ...
+}
+
+# Train the model and log metadata to the run in Neptune
+xgb.train(
+ params=model_params,
+ dtrain=data_train,
+ callbacks=[neptune_callback],
+)
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%package help
+Summary: Development documents and examples for neptune-xgboost
+Provides: python3-neptune-xgboost-doc
+%description help
+# Neptune + XGBoost integration
+
+Experiment tracking, model registry, data versioning, and live model monitoring for XGBoost trained models.
+
+## What will you get with this integration?
+
+* Log, display, organize, and compare ML experiments in a single place
+* Version, store, manage, and query trained models, and model building metadata
+* Record and monitor model training, evaluation, or production runs live
+
+## What will be logged to Neptune?
+
+* metrics,
+* parameters,
+* learning rate,
+* pickled model,
+* visualizations (feature importance chart and tree visualizations),
+* hardware consumption (CPU, GPU, Memory),
+* stdout and stderr logs,
+* training code and Git commit information,
+* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
+
+![image](https://user-images.githubusercontent.com/97611089/160614588-5d839a11-e2f9-4eed-a3d1-39314ebdb1ea.png)
+*Example dashboard with train-valid metrics and selected parameters*
+
+
+## Resources
+
+* [Documentation](https://docs.neptune.ai/integrations/xgboost)
+* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/scripts/Neptune_XGBoost_train.py)
+* [Example of a run logged in the Neptune app](https://app.neptune.ai/o/common/org/xgboost-integration/e/XGBOOST-84/dashboard/train-e395296a-4f3d-4a58-ab88-6ef06bbac657)
+* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/xgboost/notebooks/Neptune_XGBoost.ipynb)
+
+## Example
+
+On the command line:
+
+```
+pip install xgboost>=1.3.0 neptune-xgboost
+```
+
+In Python:
+
+```python
+import neptune
+import xgboost as xgb
+from neptune.integrations.xgboost import NeptuneCallback
+
+# Start a run
+run = neptune.init_run(
+ project="common/xgboost-integration",
+ api_token=neptune.ANONYMOUS_API_TOKEN,
+)
+
+# Create a NeptuneCallback instance
+neptune_callback = NeptuneCallback(run=run, log_tree=[0, 1, 2, 3])
+
+# Prepare datasets
+...
+data_train = xgb.DMatrix(X_train, label=y_train)
+
+# Define model parameters
+model_params = {
+ "eta": 0.7,
+ "gamma": 0.001,
+ "max_depth": 9,
+ ...
+}
+
+# Train the model and log metadata to the run in Neptune
+xgb.train(
+ params=model_params,
+ dtrain=data_train,
+ callbacks=[neptune_callback],
+)
+```
+
+## Support
+
+If you got stuck or simply want to talk to us, here are your options:
+
+* Check our [FAQ page](https://docs.neptune.ai/getting_help)
+* You can submit bug reports, feature requests, or contributions directly to the repository.
+* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
+* You can just shoot us an email at support@neptune.ai
+
+
+
+%prep
+%autosetup -n neptune-xgboost-1.1.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-neptune-xgboost -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..b955021
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+83f8e4174b4398697d5018fb205ece82 neptune_xgboost-1.1.1.tar.gz