1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
%global _empty_manifest_terminate_build 0
Name: python-network-symmetry
Version: 0.3.0
Release: 1
Summary: Library to compute accessibility and symmetry in networks
License: MIT License
URL: https://github.com/ABenatti/network-accessibility
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e5/3e/cd1cc347ebd8defc1c2ea12c4ca8d7e7caa95d112707a13f764dfb8178df/network-symmetry-0.3.0.tar.gz
Requires: python3-numpy
Requires: python3-scipy
%description
# Network symmetry
Fast library, written in C for python to calculate network Accessibility and Symmetry. More information regarding these measurements are described in the papers listed as follows:
[Travençolo, Bruno Augusto Nassif, and L. da F. Costa. "Accessibility in complex networks." Physics Letters A 373, no. 1 (2008): 89-95.](https://doi.org/10.1016/j.physleta.2008.10.069)
[Silva, Filipi N., Cesar H. Comin, Thomas K. DM Peron, Francisco A. Rodrigues, Cheng Ye, Richard C. Wilson, Edwin R. Hancock, and Luciano da F. Costa. "Concentric network symmetry." Information Sciences 333 (2016): 61-80.](https://arxiv.org/abs/1407.0224)
For the generalized accessibility, the following paper is used:
[De Arruda, G. F., Barbieri, A. L., Rodriguez, P. M., Rodrigues, F. A., Moreno, Y., & da Fontoura Costa, L. Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 90(3) (2014), 032812.](https://arxiv.org/abs/1404.4528)
If you use this code in a scientific study, please cite the respective references and this library.
A comprehensive guide to the theory and applications of the accessibility measurements is available from: [Benatti, Alexandre, and Luciano da F. Costa. "Accessibility: Generalizing the Node Degree (A Tutorial)." (2021).](https://www.researchgate.net/publication/355081440_Accessibility_Generalizing_the_Node_Degree_CDT-62)
## Install
Requires python headers and a C11 compatible compiler, such as gcc or clang.
To install it, simply run:
```bash
pip install network-symmetry
```
or clone this repository and install it from master by running:
```bash
pip install git+https://github.com/ABenatti/network_symmetry.git
```
## Usage
Step 1: Import the libraries
```python
import numpy as np
import network_symmetry as ns
```
Step 2: Convert network to an edge list and a list of weights (optional)
```python
vertex_count = 10
edges = np.array([(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (0, 4),
(4, 5), (3, 5), (1, 5), (1, 6), (3, 6), (4, 6), (5, 7), (4, 7), (0, 7),
(5, 8), (4, 8), (3, 8), (3, 9), (7, 9), (0, 9)])
weights = np.random.random(size=edges.shape[0])
directed = False
```
Step 3: Load the network data in a measurer object
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights = weights
)
```
Step 4: Set the parameters:
```python
h_max = 3
measurer.set_parameters(h_max= h_max)
```
Step 5: Calculate the measurements:
```python
measurer.compute_symmetry()
generalized_accessibility = measurer.accessibility_generalized()
```
Step 6: The outputs can be seen as follows.
```python
print("\nResults:")
for h in range(2,h_max+1):
print("h =", h)
print(" Accessibility:")
print(" ", measurer.accessibility(h))
print(" Symmetry (backbone):")
print(" ",measurer.symmetry_backbone(h))
print(" Symmetry (merged):")
print(" ",measurer.symmetry_merged(h))
print(" Generalized accessibility:")
print(" ", generalized_accessibility)
```
**Important:** In order to be faster, this version of accessibility considers a random walk in which the walker cannot return to the already visited nodes.
## API Documentation
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights= weights
)
```
- `vertex_count` - number of vertices in the network;
- `edges` - list of edges;
- `directed` - directed or not;
- `weights` - list containing the weights of the edges (use the same order as edges).
```python
measurer.set_parameters(h_max = 2,
merge_last_level = True,
live_stream = False,
parallel_jobs = 1,
verbose = False,
show_status = True
)
```
- `h_max` - Compute all symmetries and accessibilities for h=2 to h_max, which must be greater or equal to 2;
- `merge_last_level` - Merge the last level. True by default;
- `live_stream` - Stream the output as results are obtained. Note that the results may be out of order;
- `parallel_jobs` - The number of parallel jobs, which must be greater or equal to 1;
- `verbose` - If True, shows the calculation steps;
- `show_status` - If True, show the progress of the calculation.
```python
measurer.compute_symmetry()
```
Compute symmetries and accessibilities by using the parameters set in "set_parameters".
```python
accessibility = measurer.accessibility(h)
symmetry_backbone = measurer.symmetry_backbone(h)
symmetry_merged = measurer.symmetry_merged(h)
```
- `h`- desired number of steps.
These methods return the respective lists measurements. The order of measures in the lists follows the node orders.
## Libraries
All of these codes were developed and executed with the environment described in "requirements.txt".
## Citation Request
If you publish a paper related to this material, please cite this repository and the respective papers.
## Acknowledgements
Alexandre Benatti thanks Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior – Brasil (CAPES) – Finance Code (001) (grant no. 88882.328749/2019-01). Henrique F. de Arruda acknowledges FAPESP for sponsorship (grant no. 2018/10489-0). Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and NAP-PRP-USP for sponsorship. This work has been supported also by FAPESP grant no. 2015/22308-2.
## License
This software is under the following license.
```
Copyright (c) 2021 network-accessibility
network-accessibility (c) by Alexandre Benatti, Henrique Ferraz de Arruda
Filipi Nascimento Silva, and Luciano da Fontoura Costa
network-accessibility is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-nc-sa/4.0/>.
Software provided as is and with absolutely no warranty, express or implied,
with no liability for claim or damage.
```
%package -n python3-network-symmetry
Summary: Library to compute accessibility and symmetry in networks
Provides: python-network-symmetry
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-network-symmetry
# Network symmetry
Fast library, written in C for python to calculate network Accessibility and Symmetry. More information regarding these measurements are described in the papers listed as follows:
[Travençolo, Bruno Augusto Nassif, and L. da F. Costa. "Accessibility in complex networks." Physics Letters A 373, no. 1 (2008): 89-95.](https://doi.org/10.1016/j.physleta.2008.10.069)
[Silva, Filipi N., Cesar H. Comin, Thomas K. DM Peron, Francisco A. Rodrigues, Cheng Ye, Richard C. Wilson, Edwin R. Hancock, and Luciano da F. Costa. "Concentric network symmetry." Information Sciences 333 (2016): 61-80.](https://arxiv.org/abs/1407.0224)
For the generalized accessibility, the following paper is used:
[De Arruda, G. F., Barbieri, A. L., Rodriguez, P. M., Rodrigues, F. A., Moreno, Y., & da Fontoura Costa, L. Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 90(3) (2014), 032812.](https://arxiv.org/abs/1404.4528)
If you use this code in a scientific study, please cite the respective references and this library.
A comprehensive guide to the theory and applications of the accessibility measurements is available from: [Benatti, Alexandre, and Luciano da F. Costa. "Accessibility: Generalizing the Node Degree (A Tutorial)." (2021).](https://www.researchgate.net/publication/355081440_Accessibility_Generalizing_the_Node_Degree_CDT-62)
## Install
Requires python headers and a C11 compatible compiler, such as gcc or clang.
To install it, simply run:
```bash
pip install network-symmetry
```
or clone this repository and install it from master by running:
```bash
pip install git+https://github.com/ABenatti/network_symmetry.git
```
## Usage
Step 1: Import the libraries
```python
import numpy as np
import network_symmetry as ns
```
Step 2: Convert network to an edge list and a list of weights (optional)
```python
vertex_count = 10
edges = np.array([(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (0, 4),
(4, 5), (3, 5), (1, 5), (1, 6), (3, 6), (4, 6), (5, 7), (4, 7), (0, 7),
(5, 8), (4, 8), (3, 8), (3, 9), (7, 9), (0, 9)])
weights = np.random.random(size=edges.shape[0])
directed = False
```
Step 3: Load the network data in a measurer object
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights = weights
)
```
Step 4: Set the parameters:
```python
h_max = 3
measurer.set_parameters(h_max= h_max)
```
Step 5: Calculate the measurements:
```python
measurer.compute_symmetry()
generalized_accessibility = measurer.accessibility_generalized()
```
Step 6: The outputs can be seen as follows.
```python
print("\nResults:")
for h in range(2,h_max+1):
print("h =", h)
print(" Accessibility:")
print(" ", measurer.accessibility(h))
print(" Symmetry (backbone):")
print(" ",measurer.symmetry_backbone(h))
print(" Symmetry (merged):")
print(" ",measurer.symmetry_merged(h))
print(" Generalized accessibility:")
print(" ", generalized_accessibility)
```
**Important:** In order to be faster, this version of accessibility considers a random walk in which the walker cannot return to the already visited nodes.
## API Documentation
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights= weights
)
```
- `vertex_count` - number of vertices in the network;
- `edges` - list of edges;
- `directed` - directed or not;
- `weights` - list containing the weights of the edges (use the same order as edges).
```python
measurer.set_parameters(h_max = 2,
merge_last_level = True,
live_stream = False,
parallel_jobs = 1,
verbose = False,
show_status = True
)
```
- `h_max` - Compute all symmetries and accessibilities for h=2 to h_max, which must be greater or equal to 2;
- `merge_last_level` - Merge the last level. True by default;
- `live_stream` - Stream the output as results are obtained. Note that the results may be out of order;
- `parallel_jobs` - The number of parallel jobs, which must be greater or equal to 1;
- `verbose` - If True, shows the calculation steps;
- `show_status` - If True, show the progress of the calculation.
```python
measurer.compute_symmetry()
```
Compute symmetries and accessibilities by using the parameters set in "set_parameters".
```python
accessibility = measurer.accessibility(h)
symmetry_backbone = measurer.symmetry_backbone(h)
symmetry_merged = measurer.symmetry_merged(h)
```
- `h`- desired number of steps.
These methods return the respective lists measurements. The order of measures in the lists follows the node orders.
## Libraries
All of these codes were developed and executed with the environment described in "requirements.txt".
## Citation Request
If you publish a paper related to this material, please cite this repository and the respective papers.
## Acknowledgements
Alexandre Benatti thanks Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior – Brasil (CAPES) – Finance Code (001) (grant no. 88882.328749/2019-01). Henrique F. de Arruda acknowledges FAPESP for sponsorship (grant no. 2018/10489-0). Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and NAP-PRP-USP for sponsorship. This work has been supported also by FAPESP grant no. 2015/22308-2.
## License
This software is under the following license.
```
Copyright (c) 2021 network-accessibility
network-accessibility (c) by Alexandre Benatti, Henrique Ferraz de Arruda
Filipi Nascimento Silva, and Luciano da Fontoura Costa
network-accessibility is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-nc-sa/4.0/>.
Software provided as is and with absolutely no warranty, express or implied,
with no liability for claim or damage.
```
%package help
Summary: Development documents and examples for network-symmetry
Provides: python3-network-symmetry-doc
%description help
# Network symmetry
Fast library, written in C for python to calculate network Accessibility and Symmetry. More information regarding these measurements are described in the papers listed as follows:
[Travençolo, Bruno Augusto Nassif, and L. da F. Costa. "Accessibility in complex networks." Physics Letters A 373, no. 1 (2008): 89-95.](https://doi.org/10.1016/j.physleta.2008.10.069)
[Silva, Filipi N., Cesar H. Comin, Thomas K. DM Peron, Francisco A. Rodrigues, Cheng Ye, Richard C. Wilson, Edwin R. Hancock, and Luciano da F. Costa. "Concentric network symmetry." Information Sciences 333 (2016): 61-80.](https://arxiv.org/abs/1407.0224)
For the generalized accessibility, the following paper is used:
[De Arruda, G. F., Barbieri, A. L., Rodriguez, P. M., Rodrigues, F. A., Moreno, Y., & da Fontoura Costa, L. Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 90(3) (2014), 032812.](https://arxiv.org/abs/1404.4528)
If you use this code in a scientific study, please cite the respective references and this library.
A comprehensive guide to the theory and applications of the accessibility measurements is available from: [Benatti, Alexandre, and Luciano da F. Costa. "Accessibility: Generalizing the Node Degree (A Tutorial)." (2021).](https://www.researchgate.net/publication/355081440_Accessibility_Generalizing_the_Node_Degree_CDT-62)
## Install
Requires python headers and a C11 compatible compiler, such as gcc or clang.
To install it, simply run:
```bash
pip install network-symmetry
```
or clone this repository and install it from master by running:
```bash
pip install git+https://github.com/ABenatti/network_symmetry.git
```
## Usage
Step 1: Import the libraries
```python
import numpy as np
import network_symmetry as ns
```
Step 2: Convert network to an edge list and a list of weights (optional)
```python
vertex_count = 10
edges = np.array([(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (0, 4),
(4, 5), (3, 5), (1, 5), (1, 6), (3, 6), (4, 6), (5, 7), (4, 7), (0, 7),
(5, 8), (4, 8), (3, 8), (3, 9), (7, 9), (0, 9)])
weights = np.random.random(size=edges.shape[0])
directed = False
```
Step 3: Load the network data in a measurer object
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights = weights
)
```
Step 4: Set the parameters:
```python
h_max = 3
measurer.set_parameters(h_max= h_max)
```
Step 5: Calculate the measurements:
```python
measurer.compute_symmetry()
generalized_accessibility = measurer.accessibility_generalized()
```
Step 6: The outputs can be seen as follows.
```python
print("\nResults:")
for h in range(2,h_max+1):
print("h =", h)
print(" Accessibility:")
print(" ", measurer.accessibility(h))
print(" Symmetry (backbone):")
print(" ",measurer.symmetry_backbone(h))
print(" Symmetry (merged):")
print(" ",measurer.symmetry_merged(h))
print(" Generalized accessibility:")
print(" ", generalized_accessibility)
```
**Important:** In order to be faster, this version of accessibility considers a random walk in which the walker cannot return to the already visited nodes.
## API Documentation
```python
measurer = ns.Network(vertex_count = vertex_count,
edges = edges,
directed = directed,
weights= weights
)
```
- `vertex_count` - number of vertices in the network;
- `edges` - list of edges;
- `directed` - directed or not;
- `weights` - list containing the weights of the edges (use the same order as edges).
```python
measurer.set_parameters(h_max = 2,
merge_last_level = True,
live_stream = False,
parallel_jobs = 1,
verbose = False,
show_status = True
)
```
- `h_max` - Compute all symmetries and accessibilities for h=2 to h_max, which must be greater or equal to 2;
- `merge_last_level` - Merge the last level. True by default;
- `live_stream` - Stream the output as results are obtained. Note that the results may be out of order;
- `parallel_jobs` - The number of parallel jobs, which must be greater or equal to 1;
- `verbose` - If True, shows the calculation steps;
- `show_status` - If True, show the progress of the calculation.
```python
measurer.compute_symmetry()
```
Compute symmetries and accessibilities by using the parameters set in "set_parameters".
```python
accessibility = measurer.accessibility(h)
symmetry_backbone = measurer.symmetry_backbone(h)
symmetry_merged = measurer.symmetry_merged(h)
```
- `h`- desired number of steps.
These methods return the respective lists measurements. The order of measures in the lists follows the node orders.
## Libraries
All of these codes were developed and executed with the environment described in "requirements.txt".
## Citation Request
If you publish a paper related to this material, please cite this repository and the respective papers.
## Acknowledgements
Alexandre Benatti thanks Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior – Brasil (CAPES) – Finance Code (001) (grant no. 88882.328749/2019-01). Henrique F. de Arruda acknowledges FAPESP for sponsorship (grant no. 2018/10489-0). Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and NAP-PRP-USP for sponsorship. This work has been supported also by FAPESP grant no. 2015/22308-2.
## License
This software is under the following license.
```
Copyright (c) 2021 network-accessibility
network-accessibility (c) by Alexandre Benatti, Henrique Ferraz de Arruda
Filipi Nascimento Silva, and Luciano da Fontoura Costa
network-accessibility is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-nc-sa/4.0/>.
Software provided as is and with absolutely no warranty, express or implied,
with no liability for claim or damage.
```
%prep
%autosetup -n network-symmetry-0.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-network-symmetry -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.0-1
- Package Spec generated
|