diff options
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-nevergrad.spec | 457 | ||||
| -rw-r--r-- | sources | 1 | 
3 files changed, 459 insertions, 0 deletions
@@ -0,0 +1 @@ +/nevergrad-0.6.0.tar.gz diff --git a/python-nevergrad.spec b/python-nevergrad.spec new file mode 100644 index 0000000..99d2cd4 --- /dev/null +++ b/python-nevergrad.spec @@ -0,0 +1,457 @@ +%global _empty_manifest_terminate_build 0 +Name:		python-nevergrad +Version:	0.6.0 +Release:	1 +Summary:	A Python toolbox for performing gradient-free optimization +License:	MIT +URL:		https://github.com/facebookresearch/nevergrad +Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/06/ea/2e1f13a237258c30444aa3573040ef81723f4442c58de4af476700e62797/nevergrad-0.6.0.tar.gz +BuildArch:	noarch + +Requires:	python3-numpy +Requires:	python3-cma +Requires:	python3-bayesian-optimization +Requires:	python3-typing-extensions +Requires:	python3-pandas +Requires:	python3-black +Requires:	python3-mypy +Requires:	python3-pytest +Requires:	python3-pytest-cov +Requires:	python3-pylint +Requires:	python3-wheel +Requires:	python3-setuptools +Requires:	python3-sphinx +Requires:	python3-sphinx-rtd-theme +Requires:	python3-recommonmark +Requires:	python3-twine +Requires:	python3-autodocsumm +Requires:	python3-pandas +Requires:	python3-pyparsing +Requires:	python3-docutils +Requires:	python3-requests +Requires:	python3-xlwt +Requires:	python3-xlrd +Requires:	python3-opencv-python +Requires:	python3-matplotlib +Requires:	python3-gym +Requires:	python3-gym-anm +Requires:	python3-pygame +Requires:	python3-torch +Requires:	python3-hiplot +Requires:	python3-fcmaes +Requires:	python3-openpyxl +Requires:	python3-pyproj +Requires:	python3-Pillow +Requires:	python3-tqdm +Requires:	python3-torchvision +Requires:	python3-pyomo +Requires:	python3-mixsimulator +Requires:	python3-hyperopt +Requires:	python3-IOHexperimenter +Requires:	python3-cdt +Requires:	python3-tensorflow-estimator +Requires:	python3-scikit-learn +Requires:	python3-scikit-image +Requires:	python3-tensorflow +Requires:	python3-image-quality +Requires:	python3-keras +Requires:	python3-pymoo +Requires:	python3-Keras-Preprocessing +Requires:	python3-silence-tensorflow +Requires:	python3-tensorflow-probability +Requires:	python3-bayes-optim +Requires:	python3-nlopt +Requires:	python3-pybullet +Requires:	python3-box2d-py +Requires:	python3-glfw +Requires:	python3-mujoco +Requires:	python3-olymp +Requires:	python3-requests +Requires:	python3-xlwt +Requires:	python3-xlrd +Requires:	python3-opencv-python +Requires:	python3-matplotlib +Requires:	python3-gym +Requires:	python3-gym-anm +Requires:	python3-pygame +Requires:	python3-torch +Requires:	python3-hiplot +Requires:	python3-fcmaes +Requires:	python3-pandas +Requires:	python3-openpyxl +Requires:	python3-pyproj +Requires:	python3-Pillow +Requires:	python3-tqdm +Requires:	python3-torchvision +Requires:	python3-pyomo +Requires:	python3-mixsimulator +Requires:	python3-hyperopt +Requires:	python3-IOHexperimenter +Requires:	python3-cdt +Requires:	python3-tensorflow-estimator +Requires:	python3-scikit-learn +Requires:	python3-scikit-image +Requires:	python3-tensorflow +Requires:	python3-image-quality +Requires:	python3-keras +Requires:	python3-pymoo +Requires:	python3-Keras-Preprocessing +Requires:	python3-silence-tensorflow +Requires:	python3-tensorflow-probability +Requires:	python3-bayes-optim +Requires:	python3-nlopt +Requires:	python3-pybullet +Requires:	python3-box2d-py +Requires:	python3-glfw +Requires:	python3-mujoco +Requires:	python3-olymp +Requires:	python3-black +Requires:	python3-mypy +Requires:	python3-pytest +Requires:	python3-pytest-cov +Requires:	python3-pylint +Requires:	python3-wheel +Requires:	python3-setuptools +Requires:	python3-sphinx +Requires:	python3-sphinx-rtd-theme +Requires:	python3-recommonmark +Requires:	python3-twine +Requires:	python3-autodocsumm +Requires:	python3-pandas +Requires:	python3-pyparsing +Requires:	python3-docutils + +%description +[](https://opensource.fb.com/support-ukraine) [](https://circleci.com/gh/facebookresearch/nevergrad/tree/main) + +# Nevergrad - A gradient-free optimization platform + + + + +`nevergrad` is a Python 3.6+ library. It can be installed with: + +``` +pip install nevergrad +``` + +More installation options, including windows installation, and complete instructions are available in the "Getting started" section of the [**documentation**](https://facebookresearch.github.io/nevergrad/). + +You can join Nevergrad users Facebook group [here](https://www.facebook.com/groups/nevergradusers/). + +Minimizing a function using an optimizer (here `NGOpt`) is straightforward: + +```python +import nevergrad as ng + +def square(x): +    return sum((x - .5)**2) + +optimizer = ng.optimizers.NGOpt(parametrization=2, budget=100) +recommendation = optimizer.minimize(square) +print(recommendation.value)  # recommended value +>>> [0.49971112 0.5002944] +``` + +`nevergrad` can also support bounded continuous variables as well as discrete variables, and mixture of those. +To do this, one can specify the input space: + +```python +import nevergrad as ng + +def fake_training(learning_rate: float, batch_size: int, architecture: str) -> float: +    # optimal for learning_rate=0.2, batch_size=4, architecture="conv" +    return (learning_rate - 0.2)**2 + (batch_size - 4)**2 + (0 if architecture == "conv" else 10) + +# Instrumentation class is used for functions with multiple inputs +# (positional and/or keywords) +parametrization = ng.p.Instrumentation( +    # a log-distributed scalar between 0.001 and 1.0 +    learning_rate=ng.p.Log(lower=0.001, upper=1.0), +    # an integer from 1 to 12 +    batch_size=ng.p.Scalar(lower=1, upper=12).set_integer_casting(), +    # either "conv" or "fc" +    architecture=ng.p.Choice(["conv", "fc"]) +) + +optimizer = ng.optimizers.NGOpt(parametrization=parametrization, budget=100) +recommendation = optimizer.minimize(fake_training) + +# show the recommended keyword arguments of the function +print(recommendation.kwargs) +>>> {'learning_rate': 0.1998, 'batch_size': 4, 'architecture': 'conv'} +``` + +Learn more on parametrization in the [**documentation**](https://facebookresearch.github.io/nevergrad/)! + + + +*Convergence of a population of points to the minima with two-points DE.* + + +## Documentation + +Check out our [**documentation**](https://facebookresearch.github.io/nevergrad/)! It's still a work in progress, don't hesitate to submit issues and/or PR to update it and make it clearer! + + +## Citing + +```bibtex +@misc{nevergrad, +    author = {J. Rapin and O. Teytaud}, +    title = {{Nevergrad - A gradient-free optimization platform}}, +    year = {2018}, +    publisher = {GitHub}, +    journal = {GitHub repository}, +    howpublished = {\url{https://GitHub.com/FacebookResearch/Nevergrad}}, +} +``` + +## License + +`nevergrad` is released under the MIT license. See [LICENSE](https://github.com/facebookresearch/nevergrad/blob/0.6.0/LICENSE) for additional details about it. +See also our [Terms of Use](https://opensource.facebook.com/legal/terms) and [Privacy Policy](https://opensource.facebook.com/legal/privacy). + + + + +%package -n python3-nevergrad +Summary:	A Python toolbox for performing gradient-free optimization +Provides:	python-nevergrad +BuildRequires:	python3-devel +BuildRequires:	python3-setuptools +BuildRequires:	python3-pip +%description -n python3-nevergrad +[](https://opensource.fb.com/support-ukraine) [](https://circleci.com/gh/facebookresearch/nevergrad/tree/main) + +# Nevergrad - A gradient-free optimization platform + + + + +`nevergrad` is a Python 3.6+ library. It can be installed with: + +``` +pip install nevergrad +``` + +More installation options, including windows installation, and complete instructions are available in the "Getting started" section of the [**documentation**](https://facebookresearch.github.io/nevergrad/). + +You can join Nevergrad users Facebook group [here](https://www.facebook.com/groups/nevergradusers/). + +Minimizing a function using an optimizer (here `NGOpt`) is straightforward: + +```python +import nevergrad as ng + +def square(x): +    return sum((x - .5)**2) + +optimizer = ng.optimizers.NGOpt(parametrization=2, budget=100) +recommendation = optimizer.minimize(square) +print(recommendation.value)  # recommended value +>>> [0.49971112 0.5002944] +``` + +`nevergrad` can also support bounded continuous variables as well as discrete variables, and mixture of those. +To do this, one can specify the input space: + +```python +import nevergrad as ng + +def fake_training(learning_rate: float, batch_size: int, architecture: str) -> float: +    # optimal for learning_rate=0.2, batch_size=4, architecture="conv" +    return (learning_rate - 0.2)**2 + (batch_size - 4)**2 + (0 if architecture == "conv" else 10) + +# Instrumentation class is used for functions with multiple inputs +# (positional and/or keywords) +parametrization = ng.p.Instrumentation( +    # a log-distributed scalar between 0.001 and 1.0 +    learning_rate=ng.p.Log(lower=0.001, upper=1.0), +    # an integer from 1 to 12 +    batch_size=ng.p.Scalar(lower=1, upper=12).set_integer_casting(), +    # either "conv" or "fc" +    architecture=ng.p.Choice(["conv", "fc"]) +) + +optimizer = ng.optimizers.NGOpt(parametrization=parametrization, budget=100) +recommendation = optimizer.minimize(fake_training) + +# show the recommended keyword arguments of the function +print(recommendation.kwargs) +>>> {'learning_rate': 0.1998, 'batch_size': 4, 'architecture': 'conv'} +``` + +Learn more on parametrization in the [**documentation**](https://facebookresearch.github.io/nevergrad/)! + + + +*Convergence of a population of points to the minima with two-points DE.* + + +## Documentation + +Check out our [**documentation**](https://facebookresearch.github.io/nevergrad/)! It's still a work in progress, don't hesitate to submit issues and/or PR to update it and make it clearer! + + +## Citing + +```bibtex +@misc{nevergrad, +    author = {J. Rapin and O. Teytaud}, +    title = {{Nevergrad - A gradient-free optimization platform}}, +    year = {2018}, +    publisher = {GitHub}, +    journal = {GitHub repository}, +    howpublished = {\url{https://GitHub.com/FacebookResearch/Nevergrad}}, +} +``` + +## License + +`nevergrad` is released under the MIT license. See [LICENSE](https://github.com/facebookresearch/nevergrad/blob/0.6.0/LICENSE) for additional details about it. +See also our [Terms of Use](https://opensource.facebook.com/legal/terms) and [Privacy Policy](https://opensource.facebook.com/legal/privacy). + + + + +%package help +Summary:	Development documents and examples for nevergrad +Provides:	python3-nevergrad-doc +%description help +[](https://opensource.fb.com/support-ukraine) [](https://circleci.com/gh/facebookresearch/nevergrad/tree/main) + +# Nevergrad - A gradient-free optimization platform + + + + +`nevergrad` is a Python 3.6+ library. It can be installed with: + +``` +pip install nevergrad +``` + +More installation options, including windows installation, and complete instructions are available in the "Getting started" section of the [**documentation**](https://facebookresearch.github.io/nevergrad/). + +You can join Nevergrad users Facebook group [here](https://www.facebook.com/groups/nevergradusers/). + +Minimizing a function using an optimizer (here `NGOpt`) is straightforward: + +```python +import nevergrad as ng + +def square(x): +    return sum((x - .5)**2) + +optimizer = ng.optimizers.NGOpt(parametrization=2, budget=100) +recommendation = optimizer.minimize(square) +print(recommendation.value)  # recommended value +>>> [0.49971112 0.5002944] +``` + +`nevergrad` can also support bounded continuous variables as well as discrete variables, and mixture of those. +To do this, one can specify the input space: + +```python +import nevergrad as ng + +def fake_training(learning_rate: float, batch_size: int, architecture: str) -> float: +    # optimal for learning_rate=0.2, batch_size=4, architecture="conv" +    return (learning_rate - 0.2)**2 + (batch_size - 4)**2 + (0 if architecture == "conv" else 10) + +# Instrumentation class is used for functions with multiple inputs +# (positional and/or keywords) +parametrization = ng.p.Instrumentation( +    # a log-distributed scalar between 0.001 and 1.0 +    learning_rate=ng.p.Log(lower=0.001, upper=1.0), +    # an integer from 1 to 12 +    batch_size=ng.p.Scalar(lower=1, upper=12).set_integer_casting(), +    # either "conv" or "fc" +    architecture=ng.p.Choice(["conv", "fc"]) +) + +optimizer = ng.optimizers.NGOpt(parametrization=parametrization, budget=100) +recommendation = optimizer.minimize(fake_training) + +# show the recommended keyword arguments of the function +print(recommendation.kwargs) +>>> {'learning_rate': 0.1998, 'batch_size': 4, 'architecture': 'conv'} +``` + +Learn more on parametrization in the [**documentation**](https://facebookresearch.github.io/nevergrad/)! + + + +*Convergence of a population of points to the minima with two-points DE.* + + +## Documentation + +Check out our [**documentation**](https://facebookresearch.github.io/nevergrad/)! It's still a work in progress, don't hesitate to submit issues and/or PR to update it and make it clearer! + + +## Citing + +```bibtex +@misc{nevergrad, +    author = {J. Rapin and O. Teytaud}, +    title = {{Nevergrad - A gradient-free optimization platform}}, +    year = {2018}, +    publisher = {GitHub}, +    journal = {GitHub repository}, +    howpublished = {\url{https://GitHub.com/FacebookResearch/Nevergrad}}, +} +``` + +## License + +`nevergrad` is released under the MIT license. See [LICENSE](https://github.com/facebookresearch/nevergrad/blob/0.6.0/LICENSE) for additional details about it. +See also our [Terms of Use](https://opensource.facebook.com/legal/terms) and [Privacy Policy](https://opensource.facebook.com/legal/privacy). + + + + +%prep +%autosetup -n nevergrad-0.6.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then +	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then +	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then +	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then +	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then +	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-nevergrad -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0-1 +- Package Spec generated @@ -0,0 +1 @@ +404b64a20e0501d40d7e7abe1302ebdb  nevergrad-0.6.0.tar.gz  | 
