diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-11 02:33:15 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 02:33:15 +0000 |
| commit | a76c94e928090da0ffa07b7915cf134299aa14c8 (patch) | |
| tree | a81d09dc412159feb7e211ee22261e42f5fe9800 /python-ngboost.spec | |
| parent | ae01ffe32dc1bd977e7051480531e4178669e00d (diff) | |
automatic import of python-ngboost
Diffstat (limited to 'python-ngboost.spec')
| -rw-r--r-- | python-ngboost.spec | 276 |
1 files changed, 276 insertions, 0 deletions
diff --git a/python-ngboost.spec b/python-ngboost.spec new file mode 100644 index 0000000..65ee8bf --- /dev/null +++ b/python-ngboost.spec @@ -0,0 +1,276 @@ +%global _empty_manifest_terminate_build 0 +Name: python-ngboost +Version: 0.4.1 +Release: 1 +Summary: Library for probabilistic predictions via gradient boosting. +License: Apache-2.0 +URL: https://github.com/stanfordmlgroup/ngboost +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/90/a5/ee3cf88698107fcbe59ca8231e43cba338c0be6c229ba1e2ec26cd6fff1f/ngboost-0.4.1.tar.gz +BuildArch: noarch + +Requires: python3-lifelines +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-scikit-learn +Requires: python3-scipy +Requires: python3-tqdm + +%description +# NGBoost: Natural Gradient Boosting for Probabilistic Prediction + +<h4 align="center"> + + +[](https://github.com/stanfordmlgroup/ngboost/graphs/contributors) +[](https://opensource.org/licenses/Apache-2.0) +[](https://github.com/psf/black) +[](https://pypi.org/project/ngboost) +[](https://pypistats.org/packages/ngboost) + +</h4> + +ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing). + +## Installation + +```sh +via pip + +pip install --upgrade ngboost + +via conda-forge + +conda install -c conda-forge ngboost +``` + +## Usage + +Probabilistic regression example on the Boston housing dataset: + +```python +from ngboost import NGBRegressor + +from sklearn.datasets import load_boston +from sklearn.model_selection import train_test_split +from sklearn.metrics import mean_squared_error + +X, Y = load_boston(True) +X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) + +ngb = NGBRegressor().fit(X_train, Y_train) +Y_preds = ngb.predict(X_test) +Y_dists = ngb.pred_dist(X_test) + +# test Mean Squared Error +test_MSE = mean_squared_error(Y_preds, Y_test) +print('Test MSE', test_MSE) + +# test Negative Log Likelihood +test_NLL = -Y_dists.logpdf(Y_test).mean() +print('Test NLL', test_NLL) +``` + +Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost. + +## License + +[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE). + +## Reference + +Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019. +NGBoost: Natural Gradient Boosting for Probabilistic Prediction. +[arXiv](https://arxiv.org/abs/1910.03225) + + + +%package -n python3-ngboost +Summary: Library for probabilistic predictions via gradient boosting. +Provides: python-ngboost +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-ngboost +# NGBoost: Natural Gradient Boosting for Probabilistic Prediction + +<h4 align="center"> + + +[](https://github.com/stanfordmlgroup/ngboost/graphs/contributors) +[](https://opensource.org/licenses/Apache-2.0) +[](https://github.com/psf/black) +[](https://pypi.org/project/ngboost) +[](https://pypistats.org/packages/ngboost) + +</h4> + +ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing). + +## Installation + +```sh +via pip + +pip install --upgrade ngboost + +via conda-forge + +conda install -c conda-forge ngboost +``` + +## Usage + +Probabilistic regression example on the Boston housing dataset: + +```python +from ngboost import NGBRegressor + +from sklearn.datasets import load_boston +from sklearn.model_selection import train_test_split +from sklearn.metrics import mean_squared_error + +X, Y = load_boston(True) +X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) + +ngb = NGBRegressor().fit(X_train, Y_train) +Y_preds = ngb.predict(X_test) +Y_dists = ngb.pred_dist(X_test) + +# test Mean Squared Error +test_MSE = mean_squared_error(Y_preds, Y_test) +print('Test MSE', test_MSE) + +# test Negative Log Likelihood +test_NLL = -Y_dists.logpdf(Y_test).mean() +print('Test NLL', test_NLL) +``` + +Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost. + +## License + +[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE). + +## Reference + +Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019. +NGBoost: Natural Gradient Boosting for Probabilistic Prediction. +[arXiv](https://arxiv.org/abs/1910.03225) + + + +%package help +Summary: Development documents and examples for ngboost +Provides: python3-ngboost-doc +%description help +# NGBoost: Natural Gradient Boosting for Probabilistic Prediction + +<h4 align="center"> + + +[](https://github.com/stanfordmlgroup/ngboost/graphs/contributors) +[](https://opensource.org/licenses/Apache-2.0) +[](https://github.com/psf/black) +[](https://pypi.org/project/ngboost) +[](https://pypistats.org/packages/ngboost) + +</h4> + +ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing). + +## Installation + +```sh +via pip + +pip install --upgrade ngboost + +via conda-forge + +conda install -c conda-forge ngboost +``` + +## Usage + +Probabilistic regression example on the Boston housing dataset: + +```python +from ngboost import NGBRegressor + +from sklearn.datasets import load_boston +from sklearn.model_selection import train_test_split +from sklearn.metrics import mean_squared_error + +X, Y = load_boston(True) +X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) + +ngb = NGBRegressor().fit(X_train, Y_train) +Y_preds = ngb.predict(X_test) +Y_dists = ngb.pred_dist(X_test) + +# test Mean Squared Error +test_MSE = mean_squared_error(Y_preds, Y_test) +print('Test MSE', test_MSE) + +# test Negative Log Likelihood +test_NLL = -Y_dists.logpdf(Y_test).mean() +print('Test NLL', test_NLL) +``` + +Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost. + +## License + +[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE). + +## Reference + +Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019. +NGBoost: Natural Gradient Boosting for Probabilistic Prediction. +[arXiv](https://arxiv.org/abs/1910.03225) + + + +%prep +%autosetup -n ngboost-0.4.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-ngboost -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1 +- Package Spec generated |
