summaryrefslogtreecommitdiff
path: root/python-ngboost.spec
blob: 65ee8bf5a39e6bb5857688aaa11cd2c490faec6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
%global _empty_manifest_terminate_build 0
Name:		python-ngboost
Version:	0.4.1
Release:	1
Summary:	Library for probabilistic predictions via gradient boosting.
License:	Apache-2.0
URL:		https://github.com/stanfordmlgroup/ngboost
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/90/a5/ee3cf88698107fcbe59ca8231e43cba338c0be6c229ba1e2ec26cd6fff1f/ngboost-0.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-lifelines
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-tqdm

%description
# NGBoost: Natural Gradient Boosting for Probabilistic Prediction

<h4 align="center">

![Python package](https://github.com/stanfordmlgroup/ngboost/workflows/Python%20package/badge.svg)
[![GitHub Repo Size](https://img.shields.io/github/repo-size/stanfordmlgroup/ngboost?label=Repo+Size)](https://github.com/stanfordmlgroup/ngboost/graphs/contributors)
[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![PyPI](https://img.shields.io/pypi/v/ngboost?logo=pypi&logoColor=white)](https://pypi.org/project/ngboost)
[![PyPI Downloads](https://img.shields.io/pypi/dm/ngboost?logo=icloud&logoColor=white)](https://pypistats.org/packages/ngboost)

</h4>

ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing).

## Installation

```sh
via pip

pip install --upgrade ngboost

via conda-forge

conda install -c conda-forge ngboost
```

## Usage

Probabilistic regression example on the Boston housing dataset:

```python
from ngboost import NGBRegressor

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, Y = load_boston(True)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

ngb = NGBRegressor().fit(X_train, Y_train)
Y_preds = ngb.predict(X_test)
Y_dists = ngb.pred_dist(X_test)

# test Mean Squared Error
test_MSE = mean_squared_error(Y_preds, Y_test)
print('Test MSE', test_MSE)

# test Negative Log Likelihood
test_NLL = -Y_dists.logpdf(Y_test).mean()
print('Test NLL', test_NLL)
```

Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost.

## License

[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE).

## Reference

Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction.
[arXiv](https://arxiv.org/abs/1910.03225)



%package -n python3-ngboost
Summary:	Library for probabilistic predictions via gradient boosting.
Provides:	python-ngboost
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ngboost
# NGBoost: Natural Gradient Boosting for Probabilistic Prediction

<h4 align="center">

![Python package](https://github.com/stanfordmlgroup/ngboost/workflows/Python%20package/badge.svg)
[![GitHub Repo Size](https://img.shields.io/github/repo-size/stanfordmlgroup/ngboost?label=Repo+Size)](https://github.com/stanfordmlgroup/ngboost/graphs/contributors)
[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![PyPI](https://img.shields.io/pypi/v/ngboost?logo=pypi&logoColor=white)](https://pypi.org/project/ngboost)
[![PyPI Downloads](https://img.shields.io/pypi/dm/ngboost?logo=icloud&logoColor=white)](https://pypistats.org/packages/ngboost)

</h4>

ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing).

## Installation

```sh
via pip

pip install --upgrade ngboost

via conda-forge

conda install -c conda-forge ngboost
```

## Usage

Probabilistic regression example on the Boston housing dataset:

```python
from ngboost import NGBRegressor

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, Y = load_boston(True)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

ngb = NGBRegressor().fit(X_train, Y_train)
Y_preds = ngb.predict(X_test)
Y_dists = ngb.pred_dist(X_test)

# test Mean Squared Error
test_MSE = mean_squared_error(Y_preds, Y_test)
print('Test MSE', test_MSE)

# test Negative Log Likelihood
test_NLL = -Y_dists.logpdf(Y_test).mean()
print('Test NLL', test_NLL)
```

Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost.

## License

[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE).

## Reference

Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction.
[arXiv](https://arxiv.org/abs/1910.03225)



%package help
Summary:	Development documents and examples for ngboost
Provides:	python3-ngboost-doc
%description help
# NGBoost: Natural Gradient Boosting for Probabilistic Prediction

<h4 align="center">

![Python package](https://github.com/stanfordmlgroup/ngboost/workflows/Python%20package/badge.svg)
[![GitHub Repo Size](https://img.shields.io/github/repo-size/stanfordmlgroup/ngboost?label=Repo+Size)](https://github.com/stanfordmlgroup/ngboost/graphs/contributors)
[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![PyPI](https://img.shields.io/pypi/v/ngboost?logo=pypi&logoColor=white)](https://pypi.org/project/ngboost)
[![PyPI Downloads](https://img.shields.io/pypi/dm/ngboost?logo=icloud&logoColor=white)](https://pypistats.org/packages/ngboost)

</h4>

ngboost is a Python library that implements Natural Gradient Boosting, as described in ["NGBoost: Natural Gradient Boosting for Probabilistic Prediction"](https://stanfordmlgroup.github.io/projects/ngboost/). It is built on top of [Scikit-Learn](https://scikit-learn.org/stable/), and is designed to be scalable and modular with respect to choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this [slide deck](https://drive.google.com/file/d/183BWFAdFms81MKy6hSku8qI97OwS_JH_/view?usp=sharing).

## Installation

```sh
via pip

pip install --upgrade ngboost

via conda-forge

conda install -c conda-forge ngboost
```

## Usage

Probabilistic regression example on the Boston housing dataset:

```python
from ngboost import NGBRegressor

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, Y = load_boston(True)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

ngb = NGBRegressor().fit(X_train, Y_train)
Y_preds = ngb.predict(X_test)
Y_dists = ngb.pred_dist(X_test)

# test Mean Squared Error
test_MSE = mean_squared_error(Y_preds, Y_test)
print('Test MSE', test_MSE)

# test Negative Log Likelihood
test_NLL = -Y_dists.logpdf(Y_test).mean()
print('Test NLL', test_NLL)
```

Details on available distributions, scoring rules, learners, tuning, and model interpretation are available in our [user guide](https://stanfordmlgroup.github.io/ngboost/intro.html), which also includes numerous usage examples and information on how to add new distributions or scores to NGBoost.

## License

[Apache License 2.0](https://github.com/stanfordmlgroup/ngboost/blob/master/LICENSE).

## Reference

Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2019.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction.
[arXiv](https://arxiv.org/abs/1910.03225)



%prep
%autosetup -n ngboost-0.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ngboost -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated