summaryrefslogtreecommitdiff
path: root/python-nitrofe.spec
blob: f67c890eeb21ffd127dfbd4bce43c4ebdf5a20e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
%global _empty_manifest_terminate_build 0
Name:		python-NitroFE
Version:	0.0.10
Release:	1
Summary:	NitroFE is a Python feature engineering engine which provides a variety of feature engineering modules designed to handle continous calcualtion.
License:	Apache License 2.0
URL:		https://github.com/NITRO-AI/NitroFE
Source0:	https://mirrors.aliyun.com/pypi/web/packages/8a/80/ab9d3ced563b6c7a722ced87e52c20efd305183add071e592d02abd69de2/NitroFE-0.0.10.tar.gz
BuildArch:	noarch


%description
![zoofs Logo Header](asserts/rescaled_logo.jpeg)

# NitroFE ( Nitro Feature Engineering )

[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=reliability_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=security_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)

``NitroFE`` is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.


## Documentation
https://nitro-ai.github.io/NitroFE/
 
## Installation
[![PyPi version](https://badgen.net/pypi/v/NitroFE/)](https://pypi.com/project/NitroFE)

### Using pip

Use the package manager to install NitroFE.

```bash
pip install NitroFE
```

# Available feature domains

# [Time based Features](https://nitro-ai.github.io/NitroFE/Time%20based%20features/)

![Time based Features](https://media.giphy.com/media/xTk9Zx0YYJJqjZN4xa/giphy-downsized.gif)

Indicator / windows / moving averages features are dependent on past values for calculation, e.g. a rolling window of size 4 is dependent on past 4 values.

While creating such features during training is quite straighforward , taking it to production becomes challenging as it would requires one to externally save past values and implement logic. Creating indicators becomes even more complex as they are dependent on several other differently sized window components.

NitroFE internally handles saving past dependant values, and makes feature creation hassle free. Just use **first_fit=True** for your initial fit

* Jump right in for a handson [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1LDM9er9x7NJogRlHkRcLB4bhU1mK0l-9?usp=sharing)

The Time based domain is divided into 'Moving average features', 'Weighted window features' and 'indicator based features'

## [Indicators based Features](https://nitro-ai.github.io/NitroFE/indicators%20features/)

![Time based Features](https://media.giphy.com/media/8gNQZ9IpkcdiAjfOgN/giphy.gif)

NitroFe provides a rich variety of features which are inspired and translated from market indicators.
* [Absolute Price Oscillator](https://nitro-ai.github.io/NitroFE/Absolute%20Price%20Oscillator/)
* [Percentage price oscillator](https://nitro-ai.github.io/NitroFE/Percentage%20Value%20Oscillator/)
* [Moving average convergence divergence](https://nitro-ai.github.io/NitroFE/Moving%20Average%20Convergence%20Divergence/)
* [Average true range](https://nitro-ai.github.io/NitroFE/Average%20True%20Range/)
* [Average directional index](https://nitro-ai.github.io/NitroFE/Average%20Directional%20Movement%20Index/)
* [Aroon Oscillator](https://nitro-ai.github.io/NitroFE/Aroon%20Oscillator/)
* [Bollinger Bands](https://nitro-ai.github.io/NitroFE/Bollinger%20Bands/)
* [Kaufman Efficiency](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Triple Exponential Moving Average Oscillator](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Zero lag exponential moving average](https://nitro-ai.github.io/NitroFE/Zero%20Lag%20Exponential%20Moving%20Feature/)
* [Relative Strength Index](https://nitro-ai.github.io/NitroFE/Relative%20Strength%20Index/)
* [Inverse Fisher Relative Strength Index](https://nitro-ai.github.io/NitroFE/Inverse%20Fisher%20Relative%20Strength%20Index/)
* [Series Weighted Average](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Average/)
* [Series Weighted Moving Feature](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Moving%20Feature/)
* [Keltner channel](https://nitro-ai.github.io/NitroFE/Keltner%20Channel/)

## [Moving average features](https://nitro-ai.github.io/NitroFE/moving%20average%20features/)

![exponential_moving_feature](https://media.giphy.com/media/t7sEnf5w7wJ1CEPyy7/giphy.gif)

In statistics, a moving average (rolling average or running average) is a calculation to analyze data points by creating a series of averages of different subsets of the full data set. NitroFE provides an array of variety of moving averages type for you to utilize.

* [Exponential moving average](https://nitro-ai.github.io/NitroFE/exponential%20moving%20average/)
* [Hull Moving Average](https://nitro-ai.github.io/NitroFE/hull%20moving%20average/)
* [Kaufman's Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/kaufman%20adaptive%20moving%20average/)
* [Fractal Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/fractal%20adaptive%20moving%20average/)
* [Triple exponential moving average](https://nitro-ai.github.io/NitroFE/triple%20exponential%20moving%20average/)
* [Smoothed Moving Average](https://nitro-ai.github.io/NitroFE/smoothed%20moving%20average/)

## [Weighted window Features](https://nitro-ai.github.io/NitroFE/weighted%20window%20features/)

NitroFe provides easy to use functions to create specified weighted window featuresm and send custom operations as per your need

%package -n python3-NitroFE
Summary:	NitroFE is a Python feature engineering engine which provides a variety of feature engineering modules designed to handle continous calcualtion.
Provides:	python-NitroFE
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-NitroFE
![zoofs Logo Header](asserts/rescaled_logo.jpeg)

# NitroFE ( Nitro Feature Engineering )

[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=reliability_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=security_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)

``NitroFE`` is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.


## Documentation
https://nitro-ai.github.io/NitroFE/
 
## Installation
[![PyPi version](https://badgen.net/pypi/v/NitroFE/)](https://pypi.com/project/NitroFE)

### Using pip

Use the package manager to install NitroFE.

```bash
pip install NitroFE
```

# Available feature domains

# [Time based Features](https://nitro-ai.github.io/NitroFE/Time%20based%20features/)

![Time based Features](https://media.giphy.com/media/xTk9Zx0YYJJqjZN4xa/giphy-downsized.gif)

Indicator / windows / moving averages features are dependent on past values for calculation, e.g. a rolling window of size 4 is dependent on past 4 values.

While creating such features during training is quite straighforward , taking it to production becomes challenging as it would requires one to externally save past values and implement logic. Creating indicators becomes even more complex as they are dependent on several other differently sized window components.

NitroFE internally handles saving past dependant values, and makes feature creation hassle free. Just use **first_fit=True** for your initial fit

* Jump right in for a handson [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1LDM9er9x7NJogRlHkRcLB4bhU1mK0l-9?usp=sharing)

The Time based domain is divided into 'Moving average features', 'Weighted window features' and 'indicator based features'

## [Indicators based Features](https://nitro-ai.github.io/NitroFE/indicators%20features/)

![Time based Features](https://media.giphy.com/media/8gNQZ9IpkcdiAjfOgN/giphy.gif)

NitroFe provides a rich variety of features which are inspired and translated from market indicators.
* [Absolute Price Oscillator](https://nitro-ai.github.io/NitroFE/Absolute%20Price%20Oscillator/)
* [Percentage price oscillator](https://nitro-ai.github.io/NitroFE/Percentage%20Value%20Oscillator/)
* [Moving average convergence divergence](https://nitro-ai.github.io/NitroFE/Moving%20Average%20Convergence%20Divergence/)
* [Average true range](https://nitro-ai.github.io/NitroFE/Average%20True%20Range/)
* [Average directional index](https://nitro-ai.github.io/NitroFE/Average%20Directional%20Movement%20Index/)
* [Aroon Oscillator](https://nitro-ai.github.io/NitroFE/Aroon%20Oscillator/)
* [Bollinger Bands](https://nitro-ai.github.io/NitroFE/Bollinger%20Bands/)
* [Kaufman Efficiency](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Triple Exponential Moving Average Oscillator](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Zero lag exponential moving average](https://nitro-ai.github.io/NitroFE/Zero%20Lag%20Exponential%20Moving%20Feature/)
* [Relative Strength Index](https://nitro-ai.github.io/NitroFE/Relative%20Strength%20Index/)
* [Inverse Fisher Relative Strength Index](https://nitro-ai.github.io/NitroFE/Inverse%20Fisher%20Relative%20Strength%20Index/)
* [Series Weighted Average](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Average/)
* [Series Weighted Moving Feature](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Moving%20Feature/)
* [Keltner channel](https://nitro-ai.github.io/NitroFE/Keltner%20Channel/)

## [Moving average features](https://nitro-ai.github.io/NitroFE/moving%20average%20features/)

![exponential_moving_feature](https://media.giphy.com/media/t7sEnf5w7wJ1CEPyy7/giphy.gif)

In statistics, a moving average (rolling average or running average) is a calculation to analyze data points by creating a series of averages of different subsets of the full data set. NitroFE provides an array of variety of moving averages type for you to utilize.

* [Exponential moving average](https://nitro-ai.github.io/NitroFE/exponential%20moving%20average/)
* [Hull Moving Average](https://nitro-ai.github.io/NitroFE/hull%20moving%20average/)
* [Kaufman's Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/kaufman%20adaptive%20moving%20average/)
* [Fractal Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/fractal%20adaptive%20moving%20average/)
* [Triple exponential moving average](https://nitro-ai.github.io/NitroFE/triple%20exponential%20moving%20average/)
* [Smoothed Moving Average](https://nitro-ai.github.io/NitroFE/smoothed%20moving%20average/)

## [Weighted window Features](https://nitro-ai.github.io/NitroFE/weighted%20window%20features/)

NitroFe provides easy to use functions to create specified weighted window featuresm and send custom operations as per your need

%package help
Summary:	Development documents and examples for NitroFE
Provides:	python3-NitroFE-doc
%description help
![zoofs Logo Header](asserts/rescaled_logo.jpeg)

# NitroFE ( Nitro Feature Engineering )

[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=reliability_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=jaswinder9051998_zoofs&metric=security_rating)](https://sonarcloud.io/dashboard?id=NITRO-AI_NitroFE)

``NitroFE`` is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.


## Documentation
https://nitro-ai.github.io/NitroFE/
 
## Installation
[![PyPi version](https://badgen.net/pypi/v/NitroFE/)](https://pypi.com/project/NitroFE)

### Using pip

Use the package manager to install NitroFE.

```bash
pip install NitroFE
```

# Available feature domains

# [Time based Features](https://nitro-ai.github.io/NitroFE/Time%20based%20features/)

![Time based Features](https://media.giphy.com/media/xTk9Zx0YYJJqjZN4xa/giphy-downsized.gif)

Indicator / windows / moving averages features are dependent on past values for calculation, e.g. a rolling window of size 4 is dependent on past 4 values.

While creating such features during training is quite straighforward , taking it to production becomes challenging as it would requires one to externally save past values and implement logic. Creating indicators becomes even more complex as they are dependent on several other differently sized window components.

NitroFE internally handles saving past dependant values, and makes feature creation hassle free. Just use **first_fit=True** for your initial fit

* Jump right in for a handson [![Open In Colab](https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1LDM9er9x7NJogRlHkRcLB4bhU1mK0l-9?usp=sharing)

The Time based domain is divided into 'Moving average features', 'Weighted window features' and 'indicator based features'

## [Indicators based Features](https://nitro-ai.github.io/NitroFE/indicators%20features/)

![Time based Features](https://media.giphy.com/media/8gNQZ9IpkcdiAjfOgN/giphy.gif)

NitroFe provides a rich variety of features which are inspired and translated from market indicators.
* [Absolute Price Oscillator](https://nitro-ai.github.io/NitroFE/Absolute%20Price%20Oscillator/)
* [Percentage price oscillator](https://nitro-ai.github.io/NitroFE/Percentage%20Value%20Oscillator/)
* [Moving average convergence divergence](https://nitro-ai.github.io/NitroFE/Moving%20Average%20Convergence%20Divergence/)
* [Average true range](https://nitro-ai.github.io/NitroFE/Average%20True%20Range/)
* [Average directional index](https://nitro-ai.github.io/NitroFE/Average%20Directional%20Movement%20Index/)
* [Aroon Oscillator](https://nitro-ai.github.io/NitroFE/Aroon%20Oscillator/)
* [Bollinger Bands](https://nitro-ai.github.io/NitroFE/Bollinger%20Bands/)
* [Kaufman Efficiency](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Triple Exponential Moving Average Oscillator](https://nitro-ai.github.io/NitroFE/Kaufman%20Efficiency/)
* [Zero lag exponential moving average](https://nitro-ai.github.io/NitroFE/Zero%20Lag%20Exponential%20Moving%20Feature/)
* [Relative Strength Index](https://nitro-ai.github.io/NitroFE/Relative%20Strength%20Index/)
* [Inverse Fisher Relative Strength Index](https://nitro-ai.github.io/NitroFE/Inverse%20Fisher%20Relative%20Strength%20Index/)
* [Series Weighted Average](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Average/)
* [Series Weighted Moving Feature](https://nitro-ai.github.io/NitroFE/Series%20Weighted%20Moving%20Feature/)
* [Keltner channel](https://nitro-ai.github.io/NitroFE/Keltner%20Channel/)

## [Moving average features](https://nitro-ai.github.io/NitroFE/moving%20average%20features/)

![exponential_moving_feature](https://media.giphy.com/media/t7sEnf5w7wJ1CEPyy7/giphy.gif)

In statistics, a moving average (rolling average or running average) is a calculation to analyze data points by creating a series of averages of different subsets of the full data set. NitroFE provides an array of variety of moving averages type for you to utilize.

* [Exponential moving average](https://nitro-ai.github.io/NitroFE/exponential%20moving%20average/)
* [Hull Moving Average](https://nitro-ai.github.io/NitroFE/hull%20moving%20average/)
* [Kaufman's Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/kaufman%20adaptive%20moving%20average/)
* [Fractal Adaptive Moving Average](https://nitro-ai.github.io/NitroFE/fractal%20adaptive%20moving%20average/)
* [Triple exponential moving average](https://nitro-ai.github.io/NitroFE/triple%20exponential%20moving%20average/)
* [Smoothed Moving Average](https://nitro-ai.github.io/NitroFE/smoothed%20moving%20average/)

## [Weighted window Features](https://nitro-ai.github.io/NitroFE/weighted%20window%20features/)

NitroFe provides easy to use functions to create specified weighted window featuresm and send custom operations as per your need

%prep
%autosetup -n NitroFE-0.0.10

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-NitroFE -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.10-1
- Package Spec generated