summaryrefslogtreecommitdiff
path: root/python-nle.spec
blob: 9b6871010065395972307d4eb74fc8820c986970 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
%global _empty_manifest_terminate_build 0
Name:		python-nle
Version:	0.9.0
Release:	1
Summary:	The NetHack Learning Environment (NLE): a reinforcement learning environment based on NetHack
License:	NetHack General Public License
URL:		https://github.com/facebookresearch/nle
Source0:	https://mirrors.aliyun.com/pypi/web/packages/12/4f/af454188d1f16c7023c54dc0c89199c571ccfffe55f0a6a829ec96c62685/nle-0.9.0.tar.gz
BuildArch:	noarch


%description
<p align="center">
  <a href="https://circleci.com/gh/facebookresearch/nle">
    <img src="https://circleci.com/gh/facebookresearch/nle.svg?style=shield" />
  </a>
  <a href="https://github.com/facebookresearch/nle/actions/workflows/build_docker.yml">
    <img src="https://github.com/facebookresearch/nle/actions/workflows/test_and_deploy.yml/badge.svg?branch=main" />
  </a>
  <a href="https://pypi.python.org/pypi/nle/">
    <img src="https://img.shields.io/pypi/v/nle.svg" />
  </a>
   <a href="https://pepy.tech/project/nle">
    <img src="https://static.pepy.tech/personalized-badge/nle?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads" />
  </a>
   <a href="https://twitter.com/NetHack_LE">
    <img src="https://img.shields.io/twitter/follow/NetHack_LE?label=Twitter&style=social" alt="Twitter" />
  </a>
 </p>
The NetHack Learning Environment (NLE) is a Reinforcement Learning environment presented at [NeurIPS 2020](https://neurips.cc/Conferences/2020).
NLE is based on [NetHack 3.6.6](https://github.com/NetHack/NetHack/tree/NetHack-3.6.6_PostRelease) and designed to provide a standard RL interface to the game, and comes with tasks that function as a first step to evaluate agents on this new environment.
NetHack is one of the oldest and arguably most impactful videogames in history,
as well as being one of the hardest roguelikes currently being played by humans.
It is procedurally generated, rich in entities and dynamics, and overall an
extremely challenging environment for current state-of-the-art RL agents, while
being much cheaper to run compared to other challenging testbeds. Through NLE,
we wish to establish NetHack as one of the next challenges for research in
decision making and machine learning.
You can read more about NLE in the [NeurIPS 2020 paper](https://arxiv.org/abs/2006.13760), and about NetHack in its [original
README](./README.nh), at [nethack.org](https://nethack.org/), and on the
[NetHack wiki](https://nethackwiki.com).
![Example of an agent running on NLE](https://github.com/facebookresearch/nle/raw/main/dat/nle/example_run.gif)
### NLE Language Wrapper
We thank [ngoodger](https://github.com/ngoodger) for implementing the [NLE Language Wrapper](https://github.com/ngoodger/nle-language-wrapper) that translates the non-language observations from NetHack tasks into similar language representations. Actions can also be optionally provided in text form which are converted to the Discrete actions of the NLE.
### NetHack Learning Dataset
The NetHack Learning Dataset (NLD) code now ships with `NLE`, allowing users to the load large-scale datasets featured in [Dungeons and Data: A Large-Scale NetHack Dataset](), while also generating and loading their own datasets.
```python
import nle.dataset as nld
if not nld.db.exists():
    nld.db.create()
    # NB: Different methods are used for data based on NLE and data from NAO.
    nld.add_nledata_directory("/path/to/nld-aa", "nld-aa-v0")
    nld.add_altorg_directory("/path/to/nld-nao", "nld-nao-v0")
dataset = nld.TtyrecDataset("nld-aa-v0", batch_size=128, ...)
for i, mb in enumerate(dataset):
    foo(mb) # etc...
```
For information on how to download NLD-AA and NLD-NAO, see the dataset doc [here](./DATASET.md).
Otherwise checkout the tutorial Colab notebook [here](https://colab.research.google.com/drive/1GRP15SbOEDjbyhJGMDDb2rXAptRQztUD?usp=sharing).
# Papers using the NetHack Learning Environment
- Izumiya and Simo-Serra [Inventory Management with Attention-Based Meta Actions](https://esslab.jp/~ess/publications/IzumiyaCOG2021.pdf) (Waseda University, CoG 2021).
- Samvelyan et al. [MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research](https://arxiv.org/abs/2109.13202) (FAIR, UCL, Oxford, NeurIPS 2021).
- Zhang et al. [BeBold: Exploration Beyond the Boundary of Explored Regions](https://arxiv.org/abs/2012.08621) (Berkley, FAIR, Dec 2020).
- Küttler et al. [The NetHack Learning Environment](https://arxiv.org/abs/2006.13760) (FAIR, Oxford, NYU, Imperial, UCL, NeurIPS 2020).
Open a [pull
request](https://github.com/facebookresearch/nle/edit/main/README.md)
to add papers.
# Getting started
Starting with NLE environments is extremely simple, provided one is familiar
with other gym / RL environments.
## Installation
NLE requires `python>=3.5`, `cmake>=3.15` to be installed and available both when building the
package, and at runtime.
On **MacOS**, one can use `Homebrew` as follows:
``` bash
$ brew install cmake
```
On a plain **Ubuntu 18.04** distribution, `cmake` and other dependencies
can be installed by doing:
```bash
# Python and most build deps
$ sudo apt-get install -y build-essential autoconf libtool pkg-config \
    python3-dev python3-pip python3-numpy git flex bison libbz2-dev
# recent cmake version
$ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -
$ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
$ sudo apt-get update && apt-get --allow-unauthenticated install -y \
    cmake \
    kitware-archive-keyring
```
Afterwards it's a matter of setting up your environment. We advise using a conda
environment for this:
```bash
$ conda create -y -n nle python=3.8
$ conda activate nle
$ pip install nle
```
NOTE: If you want to extend / develop NLE, please install the package as follows:
``` bash
$ git clone https://github.com/facebookresearch/nle --recursive
$ pip install -e ".[dev]"
$ pre-commit install
```
## Docker
We have provided some docker images. Please see the [relevant
README](docker/README.md).
## Trying it out
After installation, one can try out any of the provided tasks as follows:
```python
>>> import gym
>>> import nle
>>> env = gym.make("NetHackScore-v0")
>>> env.reset()  # each reset generates a new dungeon
>>> env.step(1)  # move agent '@' north
>>> env.render()
```
NLE also comes with a few scripts that allow to get some environment rollouts,
and play with the action space:
```bash
# Play NetHackStaircase-v0 as a human
$ python -m nle.scripts.play
# Use a random agent
$ python -m nle.scripts.play --mode random
# Play the full game using directly the NetHack internal interface
# (Useful for debugging outside of the gym environment)
$ python -m nle.scripts.play --env NetHackScore-v0 # works with random agent too
# See all the options
$ python -m nle.scripts.play --help
```
Note that `nle.scripts.play` can also be run with `nle-play`, if the package
has been properly installed.
Additionally, a [TorchBeast](https://github.com/facebookresearch/torchbeast)
agent is bundled in `nle.agent` together with a simple model to provide a
starting point for experiments:
``` bash
$ pip install "nle[agent]"
$ python -m nle.agent.agent --num_actors 80 --batch_size 32 --unroll_length 80 --learning_rate 0.0001 --entropy_cost 0.0001 --use_lstm --total_steps 1000000000
```
Plot the mean return over the last 100 episodes:
```bash
$ python -m nle.scripts.plot
```
```
                              averaged episode return
  140 +---------------------------------------------------------------------+
      |             +             +            ++-+ ++++++++++++++++++++++++|
      |             :             :          ++++++++||||||||||||||||||||||||
  120 |-+...........:.............:...+-+.++++|||||||||||||||||||||||||||||||
      |             :        +++++++++++++++||||||||||AAAAAAAAAAAAAAAAAAAAAA|
      |            +++++++++++++||||||||||||||AAAAAAAAAAAA|||||||||||||||||||
  100 |-+......+++++|+|||||||||||||||||||||||AA||||||||||||||||||||||||||||||
      |       +++|||||||||||||||AAAAAAAAAAAAAA|||||||||||+++++++++++++++++++|
      |    ++++|||||AAAAAAAAAAAAAA||||||||||||++++++++++++++-+:             |
   80 |-++++|||||AAAAAA|||||||||||||||||||||+++++-+...........:...........+-|
      | ++|||||AAA|||||||||||||||++++++++++++-+ :             :             |
   60 |++||AAAAA|||||+++++++++++++-+............:.............:...........+-|
      |++|AA||||++++++-|-+        :             :             :             |
      |+|AA|||+++-+ :             :             :             :             |
   40 |+|A+++++-+...:.............:.............:.............:...........+-|
      |+AA+-+       :             :             :             :             |
      |AA-+         :             :             :             :             |
   20 |AA-+.........:.............:.............:.............:...........+-|
      |++-+         :             :             :             :             |
      |+-+          :             :             :             :             |
    0 |-+...........:.............:.............:.............:...........+-|
      |+            :             :             :             :             |
      |+            +             +             +             +             |
  -20 +---------------------------------------------------------------------+
      0           2e+08         4e+08         6e+08         8e+08         1e+09
                                       steps
```
# Contributing
We welcome contributions to NLE. If you are interested in contributing please
see [this document](./CONTRIBUTING.md).
# Architecture
NLE is direct fork of [NetHack](https://github.com/nethack/nethack) and
therefore contains code that operates on many different levels of abstraction.
This ranges from low-level game logic, to the higher-level administration of
repeated nethack games, and finally to binding of these games to Python `gym`
environment.
If you want to learn more about the architecture of `nle` and how it works
under the hood, checkout the [architecture document](./doc/nle/ARCHITECTURE.md).
This may be a useful starting point for anyone looking to contribute to the
lower level elements of NLE.
# Related Environments
- [gym\_nethack](http://campbelljc.com/research/gym_nethack/)
- [rogueinabox](https://github.com/rogueinabox/rogueinabox)
- [rogue-gym](https://github.com/kngwyu/rogue-gym)
- [MiniGrid](https://github.com/maximecb/gym-minigrid)
- [CoinRun](https://github.com/openai/coinrun)
- [MineRL](http://minerl.io/docs)
- [Project Malmo](https://www.microsoft.com/en-us/research/project/project-malmo/)
- [OpenAI Procgen Benchmark](https://openai.com/blog/procgen-benchmark/)
- [Obstacle Tower](https://github.com/Unity-Technologies/obstacle-tower-env)
# Interview about the environment with Weights&Biases
[Facebook AI Research’s Tim & Heiner on democratizing reinforcement learning research.](https://www.youtube.com/watch?v=oYSNXTkeCtw)
[![Interview with Weigths&Biases](https://img.youtube.com/vi/oYSNXTkeCtw/0.jpg)](https://www.youtube.com/watch?v=oYSNXTkeCtw)
# Citation
If you use NLE in any of your work, please cite:
```
@inproceedings{kuettler2020nethack,
  author    = {Heinrich K{\"{u}}ttler and
               Nantas Nardelli and
               Alexander H. Miller and
               Roberta Raileanu and
               Marco Selvatici and
               Edward Grefenstette and
               Tim Rockt{\"{a}}schel},
  title     = {{The NetHack Learning Environment}},
  booktitle = {Proceedings of the Conference on Neural Information Processing Systems (NeurIPS)},
  year      = {2020},
}
```
If you use NLD or the datasets in any of your work, please cite:
```
@inproceedings{hambro2022dungeonsanddata,
  author    = {Eric Hambro and
               Roberta Raileanu and
               Danielle Rothermel and
               Vegard Mella and
               Tim Rockt{\"{a}}schel and
               Heinrich K{\"{u}}ttler and
               Naila Murray},
  title     = {{Dungeons and Data: A Large-Scale NetHack Dataset}},
  booktitle = {Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year      = {2022},
  url       = {https://openreview.net/forum?id=zHNNSzo10xN}
}
```

%package -n python3-nle
Summary:	The NetHack Learning Environment (NLE): a reinforcement learning environment based on NetHack
Provides:	python-nle
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-nle
<p align="center">
  <a href="https://circleci.com/gh/facebookresearch/nle">
    <img src="https://circleci.com/gh/facebookresearch/nle.svg?style=shield" />
  </a>
  <a href="https://github.com/facebookresearch/nle/actions/workflows/build_docker.yml">
    <img src="https://github.com/facebookresearch/nle/actions/workflows/test_and_deploy.yml/badge.svg?branch=main" />
  </a>
  <a href="https://pypi.python.org/pypi/nle/">
    <img src="https://img.shields.io/pypi/v/nle.svg" />
  </a>
   <a href="https://pepy.tech/project/nle">
    <img src="https://static.pepy.tech/personalized-badge/nle?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads" />
  </a>
   <a href="https://twitter.com/NetHack_LE">
    <img src="https://img.shields.io/twitter/follow/NetHack_LE?label=Twitter&style=social" alt="Twitter" />
  </a>
 </p>
The NetHack Learning Environment (NLE) is a Reinforcement Learning environment presented at [NeurIPS 2020](https://neurips.cc/Conferences/2020).
NLE is based on [NetHack 3.6.6](https://github.com/NetHack/NetHack/tree/NetHack-3.6.6_PostRelease) and designed to provide a standard RL interface to the game, and comes with tasks that function as a first step to evaluate agents on this new environment.
NetHack is one of the oldest and arguably most impactful videogames in history,
as well as being one of the hardest roguelikes currently being played by humans.
It is procedurally generated, rich in entities and dynamics, and overall an
extremely challenging environment for current state-of-the-art RL agents, while
being much cheaper to run compared to other challenging testbeds. Through NLE,
we wish to establish NetHack as one of the next challenges for research in
decision making and machine learning.
You can read more about NLE in the [NeurIPS 2020 paper](https://arxiv.org/abs/2006.13760), and about NetHack in its [original
README](./README.nh), at [nethack.org](https://nethack.org/), and on the
[NetHack wiki](https://nethackwiki.com).
![Example of an agent running on NLE](https://github.com/facebookresearch/nle/raw/main/dat/nle/example_run.gif)
### NLE Language Wrapper
We thank [ngoodger](https://github.com/ngoodger) for implementing the [NLE Language Wrapper](https://github.com/ngoodger/nle-language-wrapper) that translates the non-language observations from NetHack tasks into similar language representations. Actions can also be optionally provided in text form which are converted to the Discrete actions of the NLE.
### NetHack Learning Dataset
The NetHack Learning Dataset (NLD) code now ships with `NLE`, allowing users to the load large-scale datasets featured in [Dungeons and Data: A Large-Scale NetHack Dataset](), while also generating and loading their own datasets.
```python
import nle.dataset as nld
if not nld.db.exists():
    nld.db.create()
    # NB: Different methods are used for data based on NLE and data from NAO.
    nld.add_nledata_directory("/path/to/nld-aa", "nld-aa-v0")
    nld.add_altorg_directory("/path/to/nld-nao", "nld-nao-v0")
dataset = nld.TtyrecDataset("nld-aa-v0", batch_size=128, ...)
for i, mb in enumerate(dataset):
    foo(mb) # etc...
```
For information on how to download NLD-AA and NLD-NAO, see the dataset doc [here](./DATASET.md).
Otherwise checkout the tutorial Colab notebook [here](https://colab.research.google.com/drive/1GRP15SbOEDjbyhJGMDDb2rXAptRQztUD?usp=sharing).
# Papers using the NetHack Learning Environment
- Izumiya and Simo-Serra [Inventory Management with Attention-Based Meta Actions](https://esslab.jp/~ess/publications/IzumiyaCOG2021.pdf) (Waseda University, CoG 2021).
- Samvelyan et al. [MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research](https://arxiv.org/abs/2109.13202) (FAIR, UCL, Oxford, NeurIPS 2021).
- Zhang et al. [BeBold: Exploration Beyond the Boundary of Explored Regions](https://arxiv.org/abs/2012.08621) (Berkley, FAIR, Dec 2020).
- Küttler et al. [The NetHack Learning Environment](https://arxiv.org/abs/2006.13760) (FAIR, Oxford, NYU, Imperial, UCL, NeurIPS 2020).
Open a [pull
request](https://github.com/facebookresearch/nle/edit/main/README.md)
to add papers.
# Getting started
Starting with NLE environments is extremely simple, provided one is familiar
with other gym / RL environments.
## Installation
NLE requires `python>=3.5`, `cmake>=3.15` to be installed and available both when building the
package, and at runtime.
On **MacOS**, one can use `Homebrew` as follows:
``` bash
$ brew install cmake
```
On a plain **Ubuntu 18.04** distribution, `cmake` and other dependencies
can be installed by doing:
```bash
# Python and most build deps
$ sudo apt-get install -y build-essential autoconf libtool pkg-config \
    python3-dev python3-pip python3-numpy git flex bison libbz2-dev
# recent cmake version
$ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -
$ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
$ sudo apt-get update && apt-get --allow-unauthenticated install -y \
    cmake \
    kitware-archive-keyring
```
Afterwards it's a matter of setting up your environment. We advise using a conda
environment for this:
```bash
$ conda create -y -n nle python=3.8
$ conda activate nle
$ pip install nle
```
NOTE: If you want to extend / develop NLE, please install the package as follows:
``` bash
$ git clone https://github.com/facebookresearch/nle --recursive
$ pip install -e ".[dev]"
$ pre-commit install
```
## Docker
We have provided some docker images. Please see the [relevant
README](docker/README.md).
## Trying it out
After installation, one can try out any of the provided tasks as follows:
```python
>>> import gym
>>> import nle
>>> env = gym.make("NetHackScore-v0")
>>> env.reset()  # each reset generates a new dungeon
>>> env.step(1)  # move agent '@' north
>>> env.render()
```
NLE also comes with a few scripts that allow to get some environment rollouts,
and play with the action space:
```bash
# Play NetHackStaircase-v0 as a human
$ python -m nle.scripts.play
# Use a random agent
$ python -m nle.scripts.play --mode random
# Play the full game using directly the NetHack internal interface
# (Useful for debugging outside of the gym environment)
$ python -m nle.scripts.play --env NetHackScore-v0 # works with random agent too
# See all the options
$ python -m nle.scripts.play --help
```
Note that `nle.scripts.play` can also be run with `nle-play`, if the package
has been properly installed.
Additionally, a [TorchBeast](https://github.com/facebookresearch/torchbeast)
agent is bundled in `nle.agent` together with a simple model to provide a
starting point for experiments:
``` bash
$ pip install "nle[agent]"
$ python -m nle.agent.agent --num_actors 80 --batch_size 32 --unroll_length 80 --learning_rate 0.0001 --entropy_cost 0.0001 --use_lstm --total_steps 1000000000
```
Plot the mean return over the last 100 episodes:
```bash
$ python -m nle.scripts.plot
```
```
                              averaged episode return
  140 +---------------------------------------------------------------------+
      |             +             +            ++-+ ++++++++++++++++++++++++|
      |             :             :          ++++++++||||||||||||||||||||||||
  120 |-+...........:.............:...+-+.++++|||||||||||||||||||||||||||||||
      |             :        +++++++++++++++||||||||||AAAAAAAAAAAAAAAAAAAAAA|
      |            +++++++++++++||||||||||||||AAAAAAAAAAAA|||||||||||||||||||
  100 |-+......+++++|+|||||||||||||||||||||||AA||||||||||||||||||||||||||||||
      |       +++|||||||||||||||AAAAAAAAAAAAAA|||||||||||+++++++++++++++++++|
      |    ++++|||||AAAAAAAAAAAAAA||||||||||||++++++++++++++-+:             |
   80 |-++++|||||AAAAAA|||||||||||||||||||||+++++-+...........:...........+-|
      | ++|||||AAA|||||||||||||||++++++++++++-+ :             :             |
   60 |++||AAAAA|||||+++++++++++++-+............:.............:...........+-|
      |++|AA||||++++++-|-+        :             :             :             |
      |+|AA|||+++-+ :             :             :             :             |
   40 |+|A+++++-+...:.............:.............:.............:...........+-|
      |+AA+-+       :             :             :             :             |
      |AA-+         :             :             :             :             |
   20 |AA-+.........:.............:.............:.............:...........+-|
      |++-+         :             :             :             :             |
      |+-+          :             :             :             :             |
    0 |-+...........:.............:.............:.............:...........+-|
      |+            :             :             :             :             |
      |+            +             +             +             +             |
  -20 +---------------------------------------------------------------------+
      0           2e+08         4e+08         6e+08         8e+08         1e+09
                                       steps
```
# Contributing
We welcome contributions to NLE. If you are interested in contributing please
see [this document](./CONTRIBUTING.md).
# Architecture
NLE is direct fork of [NetHack](https://github.com/nethack/nethack) and
therefore contains code that operates on many different levels of abstraction.
This ranges from low-level game logic, to the higher-level administration of
repeated nethack games, and finally to binding of these games to Python `gym`
environment.
If you want to learn more about the architecture of `nle` and how it works
under the hood, checkout the [architecture document](./doc/nle/ARCHITECTURE.md).
This may be a useful starting point for anyone looking to contribute to the
lower level elements of NLE.
# Related Environments
- [gym\_nethack](http://campbelljc.com/research/gym_nethack/)
- [rogueinabox](https://github.com/rogueinabox/rogueinabox)
- [rogue-gym](https://github.com/kngwyu/rogue-gym)
- [MiniGrid](https://github.com/maximecb/gym-minigrid)
- [CoinRun](https://github.com/openai/coinrun)
- [MineRL](http://minerl.io/docs)
- [Project Malmo](https://www.microsoft.com/en-us/research/project/project-malmo/)
- [OpenAI Procgen Benchmark](https://openai.com/blog/procgen-benchmark/)
- [Obstacle Tower](https://github.com/Unity-Technologies/obstacle-tower-env)
# Interview about the environment with Weights&Biases
[Facebook AI Research’s Tim & Heiner on democratizing reinforcement learning research.](https://www.youtube.com/watch?v=oYSNXTkeCtw)
[![Interview with Weigths&Biases](https://img.youtube.com/vi/oYSNXTkeCtw/0.jpg)](https://www.youtube.com/watch?v=oYSNXTkeCtw)
# Citation
If you use NLE in any of your work, please cite:
```
@inproceedings{kuettler2020nethack,
  author    = {Heinrich K{\"{u}}ttler and
               Nantas Nardelli and
               Alexander H. Miller and
               Roberta Raileanu and
               Marco Selvatici and
               Edward Grefenstette and
               Tim Rockt{\"{a}}schel},
  title     = {{The NetHack Learning Environment}},
  booktitle = {Proceedings of the Conference on Neural Information Processing Systems (NeurIPS)},
  year      = {2020},
}
```
If you use NLD or the datasets in any of your work, please cite:
```
@inproceedings{hambro2022dungeonsanddata,
  author    = {Eric Hambro and
               Roberta Raileanu and
               Danielle Rothermel and
               Vegard Mella and
               Tim Rockt{\"{a}}schel and
               Heinrich K{\"{u}}ttler and
               Naila Murray},
  title     = {{Dungeons and Data: A Large-Scale NetHack Dataset}},
  booktitle = {Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year      = {2022},
  url       = {https://openreview.net/forum?id=zHNNSzo10xN}
}
```

%package help
Summary:	Development documents and examples for nle
Provides:	python3-nle-doc
%description help
<p align="center">
  <a href="https://circleci.com/gh/facebookresearch/nle">
    <img src="https://circleci.com/gh/facebookresearch/nle.svg?style=shield" />
  </a>
  <a href="https://github.com/facebookresearch/nle/actions/workflows/build_docker.yml">
    <img src="https://github.com/facebookresearch/nle/actions/workflows/test_and_deploy.yml/badge.svg?branch=main" />
  </a>
  <a href="https://pypi.python.org/pypi/nle/">
    <img src="https://img.shields.io/pypi/v/nle.svg" />
  </a>
   <a href="https://pepy.tech/project/nle">
    <img src="https://static.pepy.tech/personalized-badge/nle?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads" />
  </a>
   <a href="https://twitter.com/NetHack_LE">
    <img src="https://img.shields.io/twitter/follow/NetHack_LE?label=Twitter&style=social" alt="Twitter" />
  </a>
 </p>
The NetHack Learning Environment (NLE) is a Reinforcement Learning environment presented at [NeurIPS 2020](https://neurips.cc/Conferences/2020).
NLE is based on [NetHack 3.6.6](https://github.com/NetHack/NetHack/tree/NetHack-3.6.6_PostRelease) and designed to provide a standard RL interface to the game, and comes with tasks that function as a first step to evaluate agents on this new environment.
NetHack is one of the oldest and arguably most impactful videogames in history,
as well as being one of the hardest roguelikes currently being played by humans.
It is procedurally generated, rich in entities and dynamics, and overall an
extremely challenging environment for current state-of-the-art RL agents, while
being much cheaper to run compared to other challenging testbeds. Through NLE,
we wish to establish NetHack as one of the next challenges for research in
decision making and machine learning.
You can read more about NLE in the [NeurIPS 2020 paper](https://arxiv.org/abs/2006.13760), and about NetHack in its [original
README](./README.nh), at [nethack.org](https://nethack.org/), and on the
[NetHack wiki](https://nethackwiki.com).
![Example of an agent running on NLE](https://github.com/facebookresearch/nle/raw/main/dat/nle/example_run.gif)
### NLE Language Wrapper
We thank [ngoodger](https://github.com/ngoodger) for implementing the [NLE Language Wrapper](https://github.com/ngoodger/nle-language-wrapper) that translates the non-language observations from NetHack tasks into similar language representations. Actions can also be optionally provided in text form which are converted to the Discrete actions of the NLE.
### NetHack Learning Dataset
The NetHack Learning Dataset (NLD) code now ships with `NLE`, allowing users to the load large-scale datasets featured in [Dungeons and Data: A Large-Scale NetHack Dataset](), while also generating and loading their own datasets.
```python
import nle.dataset as nld
if not nld.db.exists():
    nld.db.create()
    # NB: Different methods are used for data based on NLE and data from NAO.
    nld.add_nledata_directory("/path/to/nld-aa", "nld-aa-v0")
    nld.add_altorg_directory("/path/to/nld-nao", "nld-nao-v0")
dataset = nld.TtyrecDataset("nld-aa-v0", batch_size=128, ...)
for i, mb in enumerate(dataset):
    foo(mb) # etc...
```
For information on how to download NLD-AA and NLD-NAO, see the dataset doc [here](./DATASET.md).
Otherwise checkout the tutorial Colab notebook [here](https://colab.research.google.com/drive/1GRP15SbOEDjbyhJGMDDb2rXAptRQztUD?usp=sharing).
# Papers using the NetHack Learning Environment
- Izumiya and Simo-Serra [Inventory Management with Attention-Based Meta Actions](https://esslab.jp/~ess/publications/IzumiyaCOG2021.pdf) (Waseda University, CoG 2021).
- Samvelyan et al. [MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research](https://arxiv.org/abs/2109.13202) (FAIR, UCL, Oxford, NeurIPS 2021).
- Zhang et al. [BeBold: Exploration Beyond the Boundary of Explored Regions](https://arxiv.org/abs/2012.08621) (Berkley, FAIR, Dec 2020).
- Küttler et al. [The NetHack Learning Environment](https://arxiv.org/abs/2006.13760) (FAIR, Oxford, NYU, Imperial, UCL, NeurIPS 2020).
Open a [pull
request](https://github.com/facebookresearch/nle/edit/main/README.md)
to add papers.
# Getting started
Starting with NLE environments is extremely simple, provided one is familiar
with other gym / RL environments.
## Installation
NLE requires `python>=3.5`, `cmake>=3.15` to be installed and available both when building the
package, and at runtime.
On **MacOS**, one can use `Homebrew` as follows:
``` bash
$ brew install cmake
```
On a plain **Ubuntu 18.04** distribution, `cmake` and other dependencies
can be installed by doing:
```bash
# Python and most build deps
$ sudo apt-get install -y build-essential autoconf libtool pkg-config \
    python3-dev python3-pip python3-numpy git flex bison libbz2-dev
# recent cmake version
$ wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -
$ sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
$ sudo apt-get update && apt-get --allow-unauthenticated install -y \
    cmake \
    kitware-archive-keyring
```
Afterwards it's a matter of setting up your environment. We advise using a conda
environment for this:
```bash
$ conda create -y -n nle python=3.8
$ conda activate nle
$ pip install nle
```
NOTE: If you want to extend / develop NLE, please install the package as follows:
``` bash
$ git clone https://github.com/facebookresearch/nle --recursive
$ pip install -e ".[dev]"
$ pre-commit install
```
## Docker
We have provided some docker images. Please see the [relevant
README](docker/README.md).
## Trying it out
After installation, one can try out any of the provided tasks as follows:
```python
>>> import gym
>>> import nle
>>> env = gym.make("NetHackScore-v0")
>>> env.reset()  # each reset generates a new dungeon
>>> env.step(1)  # move agent '@' north
>>> env.render()
```
NLE also comes with a few scripts that allow to get some environment rollouts,
and play with the action space:
```bash
# Play NetHackStaircase-v0 as a human
$ python -m nle.scripts.play
# Use a random agent
$ python -m nle.scripts.play --mode random
# Play the full game using directly the NetHack internal interface
# (Useful for debugging outside of the gym environment)
$ python -m nle.scripts.play --env NetHackScore-v0 # works with random agent too
# See all the options
$ python -m nle.scripts.play --help
```
Note that `nle.scripts.play` can also be run with `nle-play`, if the package
has been properly installed.
Additionally, a [TorchBeast](https://github.com/facebookresearch/torchbeast)
agent is bundled in `nle.agent` together with a simple model to provide a
starting point for experiments:
``` bash
$ pip install "nle[agent]"
$ python -m nle.agent.agent --num_actors 80 --batch_size 32 --unroll_length 80 --learning_rate 0.0001 --entropy_cost 0.0001 --use_lstm --total_steps 1000000000
```
Plot the mean return over the last 100 episodes:
```bash
$ python -m nle.scripts.plot
```
```
                              averaged episode return
  140 +---------------------------------------------------------------------+
      |             +             +            ++-+ ++++++++++++++++++++++++|
      |             :             :          ++++++++||||||||||||||||||||||||
  120 |-+...........:.............:...+-+.++++|||||||||||||||||||||||||||||||
      |             :        +++++++++++++++||||||||||AAAAAAAAAAAAAAAAAAAAAA|
      |            +++++++++++++||||||||||||||AAAAAAAAAAAA|||||||||||||||||||
  100 |-+......+++++|+|||||||||||||||||||||||AA||||||||||||||||||||||||||||||
      |       +++|||||||||||||||AAAAAAAAAAAAAA|||||||||||+++++++++++++++++++|
      |    ++++|||||AAAAAAAAAAAAAA||||||||||||++++++++++++++-+:             |
   80 |-++++|||||AAAAAA|||||||||||||||||||||+++++-+...........:...........+-|
      | ++|||||AAA|||||||||||||||++++++++++++-+ :             :             |
   60 |++||AAAAA|||||+++++++++++++-+............:.............:...........+-|
      |++|AA||||++++++-|-+        :             :             :             |
      |+|AA|||+++-+ :             :             :             :             |
   40 |+|A+++++-+...:.............:.............:.............:...........+-|
      |+AA+-+       :             :             :             :             |
      |AA-+         :             :             :             :             |
   20 |AA-+.........:.............:.............:.............:...........+-|
      |++-+         :             :             :             :             |
      |+-+          :             :             :             :             |
    0 |-+...........:.............:.............:.............:...........+-|
      |+            :             :             :             :             |
      |+            +             +             +             +             |
  -20 +---------------------------------------------------------------------+
      0           2e+08         4e+08         6e+08         8e+08         1e+09
                                       steps
```
# Contributing
We welcome contributions to NLE. If you are interested in contributing please
see [this document](./CONTRIBUTING.md).
# Architecture
NLE is direct fork of [NetHack](https://github.com/nethack/nethack) and
therefore contains code that operates on many different levels of abstraction.
This ranges from low-level game logic, to the higher-level administration of
repeated nethack games, and finally to binding of these games to Python `gym`
environment.
If you want to learn more about the architecture of `nle` and how it works
under the hood, checkout the [architecture document](./doc/nle/ARCHITECTURE.md).
This may be a useful starting point for anyone looking to contribute to the
lower level elements of NLE.
# Related Environments
- [gym\_nethack](http://campbelljc.com/research/gym_nethack/)
- [rogueinabox](https://github.com/rogueinabox/rogueinabox)
- [rogue-gym](https://github.com/kngwyu/rogue-gym)
- [MiniGrid](https://github.com/maximecb/gym-minigrid)
- [CoinRun](https://github.com/openai/coinrun)
- [MineRL](http://minerl.io/docs)
- [Project Malmo](https://www.microsoft.com/en-us/research/project/project-malmo/)
- [OpenAI Procgen Benchmark](https://openai.com/blog/procgen-benchmark/)
- [Obstacle Tower](https://github.com/Unity-Technologies/obstacle-tower-env)
# Interview about the environment with Weights&Biases
[Facebook AI Research’s Tim & Heiner on democratizing reinforcement learning research.](https://www.youtube.com/watch?v=oYSNXTkeCtw)
[![Interview with Weigths&Biases](https://img.youtube.com/vi/oYSNXTkeCtw/0.jpg)](https://www.youtube.com/watch?v=oYSNXTkeCtw)
# Citation
If you use NLE in any of your work, please cite:
```
@inproceedings{kuettler2020nethack,
  author    = {Heinrich K{\"{u}}ttler and
               Nantas Nardelli and
               Alexander H. Miller and
               Roberta Raileanu and
               Marco Selvatici and
               Edward Grefenstette and
               Tim Rockt{\"{a}}schel},
  title     = {{The NetHack Learning Environment}},
  booktitle = {Proceedings of the Conference on Neural Information Processing Systems (NeurIPS)},
  year      = {2020},
}
```
If you use NLD or the datasets in any of your work, please cite:
```
@inproceedings{hambro2022dungeonsanddata,
  author    = {Eric Hambro and
               Roberta Raileanu and
               Danielle Rothermel and
               Vegard Mella and
               Tim Rockt{\"{a}}schel and
               Heinrich K{\"{u}}ttler and
               Naila Murray},
  title     = {{Dungeons and Data: A Large-Scale NetHack Dataset}},
  booktitle = {Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year      = {2022},
  url       = {https://openreview.net/forum?id=zHNNSzo10xN}
}
```

%prep
%autosetup -n nle-0.9.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-nle -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.0-1
- Package Spec generated