summaryrefslogtreecommitdiff
path: root/python-nn-builder.spec
blob: 2fa66fd47552ec05c25864f979ba7e078c5421d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
%global _empty_manifest_terminate_build 0
Name:		python-nn-builder
Version:	1.0.5
Release:	1
Summary:	Build neural networks in 1 line
License:	MIT License
URL:		https://github.com/p-christ/nn_builder
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6f/2e/4db9d142ad6c39a91503bdde1bb1f0d8ebe796dc4de34dabc335de0a7781/nn_builder-1.0.5.tar.gz
BuildArch:	noarch

Requires:	python3-tensorflow

%description
##### 1. NN
* **input_dim**: # Features in PyTorch, not needed for TensorFlow
* **layers_info**: List of integers to indicate number of hidden units you want per linear layer. 
* For example:
```
from nn_builder.pytorch.NN import NN   
model = NN(input_dim=5, layers_info=[10, 10, 1], output_activation=None, hidden_activations="relu", 
           dropout=0.0, initialiser="xavier", batch_norm=False)            

%package -n python3-nn-builder
Summary:	Build neural networks in 1 line
Provides:	python-nn-builder
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-nn-builder
##### 1. NN
* **input_dim**: # Features in PyTorch, not needed for TensorFlow
* **layers_info**: List of integers to indicate number of hidden units you want per linear layer. 
* For example:
```
from nn_builder.pytorch.NN import NN   
model = NN(input_dim=5, layers_info=[10, 10, 1], output_activation=None, hidden_activations="relu", 
           dropout=0.0, initialiser="xavier", batch_norm=False)            

%package help
Summary:	Development documents and examples for nn-builder
Provides:	python3-nn-builder-doc
%description help
##### 1. NN
* **input_dim**: # Features in PyTorch, not needed for TensorFlow
* **layers_info**: List of integers to indicate number of hidden units you want per linear layer. 
* For example:
```
from nn_builder.pytorch.NN import NN   
model = NN(input_dim=5, layers_info=[10, 10, 1], output_activation=None, hidden_activations="relu", 
           dropout=0.0, initialiser="xavier", batch_norm=False)            

%prep
%autosetup -n nn-builder-1.0.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-nn-builder -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.5-1
- Package Spec generated