1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
%global _empty_manifest_terminate_build 0
Name: python-noaa-coops
Version: 0.3.1
Release: 1
Summary: Python wrapper for NOAA Tides & Currents Data and Metadata.
License: Apache-2.0
URL: https://github.com/GClunies/noaa_coops
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/79/98/9050482cf57a15da9a07598f5ed16ecbff6a46069b0be181e6d3f4f89af5/noaa_coops-0.3.1.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-zeep
%description
# noaa_coops
[](https://pypi.python.org/pypi/noaa-coops)
[](https://pypi.python.org/pypi/noaa-coops)
A Python wrapper for the NOAA CO-OPS Tides & Currents [Data](https://tidesandcurrents.noaa.gov/api/)
and [Metadata](https://tidesandcurrents.noaa.gov/mdapi/latest/) APIs.
## Installation
This package is distributed via [PyPi](https://pypi.org/project/noaa-coops/) and can be installed using , `pip`, `poetry`, etc.
```bash
# Install with pip
❯ pip install noaa_coops
# Install with poetry
❯ poetry add noaa_coops
```
## Getting Started
### Stations
Data is accessed via `Station` class objects. Each station is uniquely identified by an `id`. To initialize a `Station` object, run:
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130") # Create Station object for Seattle (ID = 9447130)
```
Stations and their IDs can be found using the Tides & Currents [mapping interface](https://tidesandcurrents.noaa.gov/). Alternatively, you can search for stations in a bounding box using the `get_stations_from_bbox` function, which will return a list of stations found in the box (if any).
```python
>>> from pprint import pprint
>>> from noaa_coops import Station, get_stations_from_bbox
>>> stations = get_stations_from_bbox(lat_coords=[40.389, 40.9397], lon_coords=[-74.4751, -73.7432])
>>> pprint(stations)
['8516945', '8518750', '8519483', '8531680']
>>> station_one = Station(id="8516945")
>>> pprint(station_one.name)
'Kings Point'
```
### Metadata
Station metadata is stored in the `.metadata` attribute of a `Station` object. Additionally, the keys of the metadata attribute dictionary are also assigned as attributes of the station object itself.
```python
>>> from pprint import pprint
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> pprint(list(seattle.metadata.items())[:5]) # Print first 3 items in metadata
[('tidal', True), ('greatlakes', False), ('shefcode', 'EBSW1')] # Metadata dictionary can be very long
>>> pprint(seattle.lat_lon['lat']) # Print latitude
47.601944
>>> pprint(seattle.lat_lon['lon']) # Print longitude
-122.339167
```
### Data Inventory
A description of a Station's data products and available dates can be accessed via the `.data_inventory` attribute of a `Station` object.
```python
>>> from noaa_coops import Station
>>> from pprint import pprint
>>> seattle = Station(id="9447130")
>>> pprint(seattle.data_inventory)
{'Air Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 01:00'},
'Barometric Pressure': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Preliminary 6-Minute Water Level': {'end_date': '2023-02-05 19:54',
'start_date': '2001-01-01 00:00'},
'Verified 6-Minute Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1995-06-01 00:00'},
'Verified High/Low Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1977-10-18 02:18'},
'Verified Hourly Height Water Level': {'end_date': '2022-12-31 23:00',
'start_date': '1899-01-01 00:00'},
'Verified Monthly Mean Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1898-12-01 00:00'},
'Water Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Wind': {'end_date': '2019-01-02 18:36', 'start_date': '1991-11-09 00:00'}}
```
### Data Retrieval
Available data products can be found in NOAA CO-OPS Data API docs.
Station data can be fetched using the `.get_data` method on a `Station` object. Data is returned as a Pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) for ease of use and analysis. DataFrame columns are named according to the NOAA CO-OPS API [docs](https://api.tidesandcurrents.noaa.gov/api/prod/responseHelp.html), with the `t` column (timestamp) set as the DataFrame index.
The example below fetches water level data from the Seattle station (id=9447130) for a 1 month period. The corresponding [web output](https://tidesandcurrents.noaa.gov/waterlevels.html?id=9447130&units=metric&bdate=20150101&edate=20150131&timezone=GMT&datum=MLLW) is shown below the code as a reference.
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> df_water_levels = seattle.get_data(
... begin_date="20150101",
... end_date="20150131",
... product="water_level",
... datum="MLLW",
... units="metric",
... time_zone="gmt")
>>> df_water_levels.head()
v s f q
t
2015-01-01 00:00:00 1.799 0.023 0,0,0,0 v
2015-01-01 00:06:00 1.718 0.018 0,0,0,0 v
2015-01-01 00:12:00 1.639 0.013 0,0,0,0 v
2015-01-01 00:18:00 1.557 0.012 0,0,0,0 v
2015-01-01 00:24:00 1.473 0.014 0,0,0,0 v
```

## Development
### Requirements
This package and its dependencies are managed using [poetry](https://python-poetry.org/). To install the development environment for `noaa_coops`, first install poetry, then run (inside the repo):
```bash
poetry install
```
### TODO
Click [here](https://github.com/GClunies/noaa_coops/issues) for a list of existing issues and to submit a new one.
### Contribution
Contributions are welcome, feel free to submit a pull request.
%package -n python3-noaa-coops
Summary: Python wrapper for NOAA Tides & Currents Data and Metadata.
Provides: python-noaa-coops
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-noaa-coops
# noaa_coops
[](https://pypi.python.org/pypi/noaa-coops)
[](https://pypi.python.org/pypi/noaa-coops)
A Python wrapper for the NOAA CO-OPS Tides & Currents [Data](https://tidesandcurrents.noaa.gov/api/)
and [Metadata](https://tidesandcurrents.noaa.gov/mdapi/latest/) APIs.
## Installation
This package is distributed via [PyPi](https://pypi.org/project/noaa-coops/) and can be installed using , `pip`, `poetry`, etc.
```bash
# Install with pip
❯ pip install noaa_coops
# Install with poetry
❯ poetry add noaa_coops
```
## Getting Started
### Stations
Data is accessed via `Station` class objects. Each station is uniquely identified by an `id`. To initialize a `Station` object, run:
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130") # Create Station object for Seattle (ID = 9447130)
```
Stations and their IDs can be found using the Tides & Currents [mapping interface](https://tidesandcurrents.noaa.gov/). Alternatively, you can search for stations in a bounding box using the `get_stations_from_bbox` function, which will return a list of stations found in the box (if any).
```python
>>> from pprint import pprint
>>> from noaa_coops import Station, get_stations_from_bbox
>>> stations = get_stations_from_bbox(lat_coords=[40.389, 40.9397], lon_coords=[-74.4751, -73.7432])
>>> pprint(stations)
['8516945', '8518750', '8519483', '8531680']
>>> station_one = Station(id="8516945")
>>> pprint(station_one.name)
'Kings Point'
```
### Metadata
Station metadata is stored in the `.metadata` attribute of a `Station` object. Additionally, the keys of the metadata attribute dictionary are also assigned as attributes of the station object itself.
```python
>>> from pprint import pprint
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> pprint(list(seattle.metadata.items())[:5]) # Print first 3 items in metadata
[('tidal', True), ('greatlakes', False), ('shefcode', 'EBSW1')] # Metadata dictionary can be very long
>>> pprint(seattle.lat_lon['lat']) # Print latitude
47.601944
>>> pprint(seattle.lat_lon['lon']) # Print longitude
-122.339167
```
### Data Inventory
A description of a Station's data products and available dates can be accessed via the `.data_inventory` attribute of a `Station` object.
```python
>>> from noaa_coops import Station
>>> from pprint import pprint
>>> seattle = Station(id="9447130")
>>> pprint(seattle.data_inventory)
{'Air Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 01:00'},
'Barometric Pressure': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Preliminary 6-Minute Water Level': {'end_date': '2023-02-05 19:54',
'start_date': '2001-01-01 00:00'},
'Verified 6-Minute Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1995-06-01 00:00'},
'Verified High/Low Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1977-10-18 02:18'},
'Verified Hourly Height Water Level': {'end_date': '2022-12-31 23:00',
'start_date': '1899-01-01 00:00'},
'Verified Monthly Mean Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1898-12-01 00:00'},
'Water Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Wind': {'end_date': '2019-01-02 18:36', 'start_date': '1991-11-09 00:00'}}
```
### Data Retrieval
Available data products can be found in NOAA CO-OPS Data API docs.
Station data can be fetched using the `.get_data` method on a `Station` object. Data is returned as a Pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) for ease of use and analysis. DataFrame columns are named according to the NOAA CO-OPS API [docs](https://api.tidesandcurrents.noaa.gov/api/prod/responseHelp.html), with the `t` column (timestamp) set as the DataFrame index.
The example below fetches water level data from the Seattle station (id=9447130) for a 1 month period. The corresponding [web output](https://tidesandcurrents.noaa.gov/waterlevels.html?id=9447130&units=metric&bdate=20150101&edate=20150131&timezone=GMT&datum=MLLW) is shown below the code as a reference.
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> df_water_levels = seattle.get_data(
... begin_date="20150101",
... end_date="20150131",
... product="water_level",
... datum="MLLW",
... units="metric",
... time_zone="gmt")
>>> df_water_levels.head()
v s f q
t
2015-01-01 00:00:00 1.799 0.023 0,0,0,0 v
2015-01-01 00:06:00 1.718 0.018 0,0,0,0 v
2015-01-01 00:12:00 1.639 0.013 0,0,0,0 v
2015-01-01 00:18:00 1.557 0.012 0,0,0,0 v
2015-01-01 00:24:00 1.473 0.014 0,0,0,0 v
```

## Development
### Requirements
This package and its dependencies are managed using [poetry](https://python-poetry.org/). To install the development environment for `noaa_coops`, first install poetry, then run (inside the repo):
```bash
poetry install
```
### TODO
Click [here](https://github.com/GClunies/noaa_coops/issues) for a list of existing issues and to submit a new one.
### Contribution
Contributions are welcome, feel free to submit a pull request.
%package help
Summary: Development documents and examples for noaa-coops
Provides: python3-noaa-coops-doc
%description help
# noaa_coops
[](https://pypi.python.org/pypi/noaa-coops)
[](https://pypi.python.org/pypi/noaa-coops)
A Python wrapper for the NOAA CO-OPS Tides & Currents [Data](https://tidesandcurrents.noaa.gov/api/)
and [Metadata](https://tidesandcurrents.noaa.gov/mdapi/latest/) APIs.
## Installation
This package is distributed via [PyPi](https://pypi.org/project/noaa-coops/) and can be installed using , `pip`, `poetry`, etc.
```bash
# Install with pip
❯ pip install noaa_coops
# Install with poetry
❯ poetry add noaa_coops
```
## Getting Started
### Stations
Data is accessed via `Station` class objects. Each station is uniquely identified by an `id`. To initialize a `Station` object, run:
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130") # Create Station object for Seattle (ID = 9447130)
```
Stations and their IDs can be found using the Tides & Currents [mapping interface](https://tidesandcurrents.noaa.gov/). Alternatively, you can search for stations in a bounding box using the `get_stations_from_bbox` function, which will return a list of stations found in the box (if any).
```python
>>> from pprint import pprint
>>> from noaa_coops import Station, get_stations_from_bbox
>>> stations = get_stations_from_bbox(lat_coords=[40.389, 40.9397], lon_coords=[-74.4751, -73.7432])
>>> pprint(stations)
['8516945', '8518750', '8519483', '8531680']
>>> station_one = Station(id="8516945")
>>> pprint(station_one.name)
'Kings Point'
```
### Metadata
Station metadata is stored in the `.metadata` attribute of a `Station` object. Additionally, the keys of the metadata attribute dictionary are also assigned as attributes of the station object itself.
```python
>>> from pprint import pprint
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> pprint(list(seattle.metadata.items())[:5]) # Print first 3 items in metadata
[('tidal', True), ('greatlakes', False), ('shefcode', 'EBSW1')] # Metadata dictionary can be very long
>>> pprint(seattle.lat_lon['lat']) # Print latitude
47.601944
>>> pprint(seattle.lat_lon['lon']) # Print longitude
-122.339167
```
### Data Inventory
A description of a Station's data products and available dates can be accessed via the `.data_inventory` attribute of a `Station` object.
```python
>>> from noaa_coops import Station
>>> from pprint import pprint
>>> seattle = Station(id="9447130")
>>> pprint(seattle.data_inventory)
{'Air Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 01:00'},
'Barometric Pressure': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Preliminary 6-Minute Water Level': {'end_date': '2023-02-05 19:54',
'start_date': '2001-01-01 00:00'},
'Verified 6-Minute Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1995-06-01 00:00'},
'Verified High/Low Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1977-10-18 02:18'},
'Verified Hourly Height Water Level': {'end_date': '2022-12-31 23:00',
'start_date': '1899-01-01 00:00'},
'Verified Monthly Mean Water Level': {'end_date': '2022-12-31 23:54',
'start_date': '1898-12-01 00:00'},
'Water Temperature': {'end_date': '2019-01-02 18:36',
'start_date': '1991-11-09 00:00'},
'Wind': {'end_date': '2019-01-02 18:36', 'start_date': '1991-11-09 00:00'}}
```
### Data Retrieval
Available data products can be found in NOAA CO-OPS Data API docs.
Station data can be fetched using the `.get_data` method on a `Station` object. Data is returned as a Pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) for ease of use and analysis. DataFrame columns are named according to the NOAA CO-OPS API [docs](https://api.tidesandcurrents.noaa.gov/api/prod/responseHelp.html), with the `t` column (timestamp) set as the DataFrame index.
The example below fetches water level data from the Seattle station (id=9447130) for a 1 month period. The corresponding [web output](https://tidesandcurrents.noaa.gov/waterlevels.html?id=9447130&units=metric&bdate=20150101&edate=20150131&timezone=GMT&datum=MLLW) is shown below the code as a reference.
```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> df_water_levels = seattle.get_data(
... begin_date="20150101",
... end_date="20150131",
... product="water_level",
... datum="MLLW",
... units="metric",
... time_zone="gmt")
>>> df_water_levels.head()
v s f q
t
2015-01-01 00:00:00 1.799 0.023 0,0,0,0 v
2015-01-01 00:06:00 1.718 0.018 0,0,0,0 v
2015-01-01 00:12:00 1.639 0.013 0,0,0,0 v
2015-01-01 00:18:00 1.557 0.012 0,0,0,0 v
2015-01-01 00:24:00 1.473 0.014 0,0,0,0 v
```

## Development
### Requirements
This package and its dependencies are managed using [poetry](https://python-poetry.org/). To install the development environment for `noaa_coops`, first install poetry, then run (inside the repo):
```bash
poetry install
```
### TODO
Click [here](https://github.com/GClunies/noaa_coops/issues) for a list of existing issues and to submit a new one.
### Contribution
Contributions are welcome, feel free to submit a pull request.
%prep
%autosetup -n noaa-coops-0.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-noaa-coops -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.1-1
- Package Spec generated
|