summaryrefslogtreecommitdiff
path: root/python-norbert.spec
blob: 78f8902b69dece108f8ee49d4323b76cadcecb51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
%global _empty_manifest_terminate_build 0
Name:		python-norbert
Version:	0.2.1
Release:	1
Summary:	Painless Wiener Filters
License:	MIT License
URL:		https://github.com/sigsep/norbert
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/2c/a0/397cf82cfd0dcb73b2d6a8230ea89f8a4ff9c1c42cb97143cb867bebd6a5/norbert-0.2.1.tar.gz
BuildArch:	noarch

Requires:	python3-scipy
Requires:	python3-check-manifest
Requires:	python3-sphinx
Requires:	python3-sphinx-rtd-theme
Requires:	python3-recommonmark
Requires:	python3-numpydoc
Requires:	python3-pytest
Requires:	python3-pytest-pep8

%description
# Norbert

[![Build Status](https://travis-ci.com/sigsep/norbert.svg?branch=master)](https://travis-ci.com/sigsep/norbert)
[![Latest Version](https://img.shields.io/pypi/v/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

<img align="left" src="https://user-images.githubusercontent.com/72940/45908695-15ce8900-bdfe-11e8-8420-78ad9bb32f84.jpg">

Norbert is an implementation of multichannel Wiener filter, that is a very popular way of filtering multichannel audio for several applications, notably speech enhancement and source separation.

This filtering method assumes you have some way of estimating power or magnitude spectrograms for all the audio sources (non-negative) composing a mixture. If you only have a model for some _target_ sources, and not for the rest, you may use `norbert.residual_model` to let Norbert create a residual model for you.

Given all source spectrograms and the mixture Time-Frequency representation, this repository can build and apply the filter that is appropriate for separation, by optimally exploiting multichannel information (like in stereo signals). This is done in an iterative procedure called _Expectation Maximization_, where filtering and re-estimation of the parameters are iterated.

From a beginner's perspective, all you need to do is often to call `norbert.wiener` with the mix and your spectrogram estimates. This should handle the rest.

From a more expert perspective, you will find the different ingredients from the EM algorithm as functions in the module as described in the [API documentation](https://sigsep.github.io/norbert/)

## Installation

`pip install norbert`

## Usage

Asssuming a complex spectrogram `X`, and a (magnitude) estimate of a target to be extracted from the spectrogram, performing the multichannel wiener filter is as simple as this:

```python
X = stft(audio)
V = model(X)
Y = norbert.wiener(V, X)
estimate = istft(Y)
```

## How to contribute

_norbert_ is a community focused project, we therefore encourage the community to submit bug-fixes and requests for technical support through [github issues](https://github.com/sigsep/norbert/issues/new). For more details of how to contribute, please follow our [`CONTRIBUTING.md`](CONTRIBUTING.md). 

## Authors

Antoine Liutkus, Fabian-Robert Stöter

## Citation

If you want to cite the _Norbert_ software package, please use the DOI from Zenodo:

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

## License

MIT




%package -n python3-norbert
Summary:	Painless Wiener Filters
Provides:	python-norbert
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-norbert
# Norbert

[![Build Status](https://travis-ci.com/sigsep/norbert.svg?branch=master)](https://travis-ci.com/sigsep/norbert)
[![Latest Version](https://img.shields.io/pypi/v/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

<img align="left" src="https://user-images.githubusercontent.com/72940/45908695-15ce8900-bdfe-11e8-8420-78ad9bb32f84.jpg">

Norbert is an implementation of multichannel Wiener filter, that is a very popular way of filtering multichannel audio for several applications, notably speech enhancement and source separation.

This filtering method assumes you have some way of estimating power or magnitude spectrograms for all the audio sources (non-negative) composing a mixture. If you only have a model for some _target_ sources, and not for the rest, you may use `norbert.residual_model` to let Norbert create a residual model for you.

Given all source spectrograms and the mixture Time-Frequency representation, this repository can build and apply the filter that is appropriate for separation, by optimally exploiting multichannel information (like in stereo signals). This is done in an iterative procedure called _Expectation Maximization_, where filtering and re-estimation of the parameters are iterated.

From a beginner's perspective, all you need to do is often to call `norbert.wiener` with the mix and your spectrogram estimates. This should handle the rest.

From a more expert perspective, you will find the different ingredients from the EM algorithm as functions in the module as described in the [API documentation](https://sigsep.github.io/norbert/)

## Installation

`pip install norbert`

## Usage

Asssuming a complex spectrogram `X`, and a (magnitude) estimate of a target to be extracted from the spectrogram, performing the multichannel wiener filter is as simple as this:

```python
X = stft(audio)
V = model(X)
Y = norbert.wiener(V, X)
estimate = istft(Y)
```

## How to contribute

_norbert_ is a community focused project, we therefore encourage the community to submit bug-fixes and requests for technical support through [github issues](https://github.com/sigsep/norbert/issues/new). For more details of how to contribute, please follow our [`CONTRIBUTING.md`](CONTRIBUTING.md). 

## Authors

Antoine Liutkus, Fabian-Robert Stöter

## Citation

If you want to cite the _Norbert_ software package, please use the DOI from Zenodo:

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

## License

MIT




%package help
Summary:	Development documents and examples for norbert
Provides:	python3-norbert-doc
%description help
# Norbert

[![Build Status](https://travis-ci.com/sigsep/norbert.svg?branch=master)](https://travis-ci.com/sigsep/norbert)
[![Latest Version](https://img.shields.io/pypi/v/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/norbert.svg)](https://pypi.python.org/pypi/norbert)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

<img align="left" src="https://user-images.githubusercontent.com/72940/45908695-15ce8900-bdfe-11e8-8420-78ad9bb32f84.jpg">

Norbert is an implementation of multichannel Wiener filter, that is a very popular way of filtering multichannel audio for several applications, notably speech enhancement and source separation.

This filtering method assumes you have some way of estimating power or magnitude spectrograms for all the audio sources (non-negative) composing a mixture. If you only have a model for some _target_ sources, and not for the rest, you may use `norbert.residual_model` to let Norbert create a residual model for you.

Given all source spectrograms and the mixture Time-Frequency representation, this repository can build and apply the filter that is appropriate for separation, by optimally exploiting multichannel information (like in stereo signals). This is done in an iterative procedure called _Expectation Maximization_, where filtering and re-estimation of the parameters are iterated.

From a beginner's perspective, all you need to do is often to call `norbert.wiener` with the mix and your spectrogram estimates. This should handle the rest.

From a more expert perspective, you will find the different ingredients from the EM algorithm as functions in the module as described in the [API documentation](https://sigsep.github.io/norbert/)

## Installation

`pip install norbert`

## Usage

Asssuming a complex spectrogram `X`, and a (magnitude) estimate of a target to be extracted from the spectrogram, performing the multichannel wiener filter is as simple as this:

```python
X = stft(audio)
V = model(X)
Y = norbert.wiener(V, X)
estimate = istft(Y)
```

## How to contribute

_norbert_ is a community focused project, we therefore encourage the community to submit bug-fixes and requests for technical support through [github issues](https://github.com/sigsep/norbert/issues/new). For more details of how to contribute, please follow our [`CONTRIBUTING.md`](CONTRIBUTING.md). 

## Authors

Antoine Liutkus, Fabian-Robert Stöter

## Citation

If you want to cite the _Norbert_ software package, please use the DOI from Zenodo:

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3269749.svg)](https://doi.org/10.5281/zenodo.3269749)

## License

MIT




%prep
%autosetup -n norbert-0.2.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-norbert -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated