summaryrefslogtreecommitdiff
path: root/python-numba-kdtree.spec
blob: c7cc41f345c4e7ba8f5d6170e09fad31ee5ffa2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
%global _empty_manifest_terminate_build 0
Name:		python-numba-kdtree
Version:	0.1.7
Release:	1
Summary:	A kdtree implementation for numba.
License:	MIT
URL:		https://github.com/mortacious/numba-kdtree
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d6/47/660d9f3fc314269777e25dc69650b422df4b356d4b2a3bb26cb42bf7b8fb/numba-kdtree-0.1.7.tar.gz


%description
# Numba-kdtree

A simple KD-Tree for numba using a ctypes wrapper around the scipy `ckdtree` implementation. 
The KD-Tree is usable in both python and numba nopython functions.

Once the query functions are compiled by numba, the implementation is just as fast as the original scipy version.

Note: Currently only a basic subset of the original `ckdtree` interface is implemented.

## Installation

### Using pip
```
pip install numba-kdtree
```

### From source
```
git clone https://github.com/mortacious/numba-kdtree.git
cd numba-kdtree
python setup.py install
```

## Usage

```python
import numpy as np
from numba_kdtree import KDTree
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

# query the nearest neighbors of the first 100 points
distances, indices = kdtree.query(data[:100], k=30)

# query all points in a radius around the first 100 points
indices = kdtree.query_radius(data[:100], r=0.5, return_sorted=True)
```

The `KDTree` can also be used from within numba functions


```python
import numpy as np
from numba import njit
from numba_kdtree import KDTree

def numba_function_with_kdtree(kdtree, data):
    for i in range(data.shape[0]):
        distances, indices = kdtree.query(data[0], k=30)
        #<Use the computed neighbors
        
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

numba_function_with_kdtree(kdtree, data[:10000])
```

## TODOs

- Implement all scipy `ckdtree` functions
- Fix the parallel query functions


%package -n python3-numba-kdtree
Summary:	A kdtree implementation for numba.
Provides:	python-numba-kdtree
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-numba-kdtree
# Numba-kdtree

A simple KD-Tree for numba using a ctypes wrapper around the scipy `ckdtree` implementation. 
The KD-Tree is usable in both python and numba nopython functions.

Once the query functions are compiled by numba, the implementation is just as fast as the original scipy version.

Note: Currently only a basic subset of the original `ckdtree` interface is implemented.

## Installation

### Using pip
```
pip install numba-kdtree
```

### From source
```
git clone https://github.com/mortacious/numba-kdtree.git
cd numba-kdtree
python setup.py install
```

## Usage

```python
import numpy as np
from numba_kdtree import KDTree
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

# query the nearest neighbors of the first 100 points
distances, indices = kdtree.query(data[:100], k=30)

# query all points in a radius around the first 100 points
indices = kdtree.query_radius(data[:100], r=0.5, return_sorted=True)
```

The `KDTree` can also be used from within numba functions


```python
import numpy as np
from numba import njit
from numba_kdtree import KDTree

def numba_function_with_kdtree(kdtree, data):
    for i in range(data.shape[0]):
        distances, indices = kdtree.query(data[0], k=30)
        #<Use the computed neighbors
        
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

numba_function_with_kdtree(kdtree, data[:10000])
```

## TODOs

- Implement all scipy `ckdtree` functions
- Fix the parallel query functions


%package help
Summary:	Development documents and examples for numba-kdtree
Provides:	python3-numba-kdtree-doc
%description help
# Numba-kdtree

A simple KD-Tree for numba using a ctypes wrapper around the scipy `ckdtree` implementation. 
The KD-Tree is usable in both python and numba nopython functions.

Once the query functions are compiled by numba, the implementation is just as fast as the original scipy version.

Note: Currently only a basic subset of the original `ckdtree` interface is implemented.

## Installation

### Using pip
```
pip install numba-kdtree
```

### From source
```
git clone https://github.com/mortacious/numba-kdtree.git
cd numba-kdtree
python setup.py install
```

## Usage

```python
import numpy as np
from numba_kdtree import KDTree
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

# query the nearest neighbors of the first 100 points
distances, indices = kdtree.query(data[:100], k=30)

# query all points in a radius around the first 100 points
indices = kdtree.query_radius(data[:100], r=0.5, return_sorted=True)
```

The `KDTree` can also be used from within numba functions


```python
import numpy as np
from numba import njit
from numba_kdtree import KDTree

def numba_function_with_kdtree(kdtree, data):
    for i in range(data.shape[0]):
        distances, indices = kdtree.query(data[0], k=30)
        #<Use the computed neighbors
        
data = np.random.random(3_000_000).reshape(-1, 3)
kdtree = KDTree(data, leafsize=10)

numba_function_with_kdtree(kdtree, data[:10000])
```

## TODOs

- Implement all scipy `ckdtree` functions
- Fix the parallel query functions


%prep
%autosetup -n numba-kdtree-0.1.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-numba-kdtree -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.7-1
- Package Spec generated