1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
%global _empty_manifest_terminate_build 0
Name: python-numbagg
Version: 0.2.2
Release: 1
Summary: Fast N-dimensional aggregation functions with Numba
License: BSD
URL: https://github.com/numbagg/numbagg
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/65/cd/604a349bfd9315798c6a5f315e4e4f19298df63ab53429c3c82806334123/numbagg-0.2.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-numba
%description
# Numbagg: Fast N-dimensional aggregation functions with Numba
[]((https://github.com/numbagg/numbagg/actions?query=workflow%3ATest))
[](https://pypi.python.org/pypi/numbagg/)
Fast, flexible N-dimensional array functions written with
[Numba](https://github.com/numba/numba) and NumPy's [generalized
ufuncs](http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html).
Currently accelerated functions:
- Array functions: `allnan`, `anynan`, `count`, `nanargmax`,
`nanargmin`, `nanmax`, `nanmean`, `nanstd`, `nanvar`, `nanmin`,
`nansum`
- Moving window functions: `move_exp_nanmean`, `move_mean`, `move_sum`
Note: Only functions listed here (exposed in Numbagg's top level namespace) are
supported as part of Numbagg's public API.
## Easy to extend
Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation
functions accelerated by Numba. All the hard work is done by Numba's JIT
compiler and NumPy's gufunc machinery (as wrapped by Numba).
For example, here is how we wrote `nansum`:
```python
import numpy as np
from numbagg.decorators import ndreduce
@ndreduce
def nansum(a):
asum = 0.0
for ai in a.flat:
if not np.isnan(ai):
asum += ai
return asum
```
You are welcome to experiment with Numbagg's decorator functions, but these are
not public APIs (yet): we reserve the right to change them at any time.
We'd rather get your pull requests to add new functions into Numbagg directly!
## Advantages over Bottleneck
- Way less code. Easier to add new functions. No ad-hoc templating
system. No Cython!
- Fast functions still work for >3 dimensions.
- `axis` argument handles tuples of integers.
Most of the functions in Numbagg (including our test suite) are adapted from
Bottleneck's battle-hardened implementations. Still, Numbagg is experimental,
and probably not yet ready for production.
## Benchmarks
Initial benchmarks are quite encouraging. Numbagg/Numba has comparable (slightly
better) performance than Bottleneck's hand-written C:
```python
import numbagg
import numpy as np
import bottleneck
x = np.random.RandomState(42).randn(1000, 1000)
x[x < -1] = np.NaN
# timings with numba=0.41.0 and bottleneck=1.2.1
In [2]: %timeit numbagg.nanmean(x)
1.8 ms ± 92.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [3]: %timeit numbagg.nanmean(x, axis=0)
3.63 ms ± 136 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [4]: %timeit numbagg.nanmean(x, axis=1)
1.81 ms ± 41 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [5]: %timeit bottleneck.nanmean(x)
2.22 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [6]: %timeit bottleneck.nanmean(x, axis=0)
4.45 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [7]: %timeit bottleneck.nanmean(x, axis=1)
2.19 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
## Our approach
Numbagg includes somewhat awkward workarounds for features missing from
NumPy/Numba:
- It implements its own cache for functions wrapped by Numba's
`guvectorize`, because that decorator is rather slow.
- It does its [own handling of array
transposes](https://github.com/numbagg/numbagg/blob/main/numbagg/decorators.py#L69)
to handle the `axis` argument, which we hope will [eventually be
directly supported](https://github.com/numpy/numpy/issues/5197) by
all NumPy gufuncs.
- It uses some [terrible
hacks](https://github.com/numbagg/numbagg/blob/main/numbagg/transform.py) to
hide the out-of-bound memory access necessary to write [gufuncs that handle
scalar
values](https://github.com/numba/numba/blob/main/numba/tests/test_guvectorize_scalar.py)
with Numba.
I hope that the need for most of these will eventually go away. In the meantime,
expect Numbagg to be tightly coupled to Numba and NumPy release cycles.
## License
3-clause BSD. Includes portions of Bottleneck, which is distributed under a
Simplified BSD license.
%package -n python3-numbagg
Summary: Fast N-dimensional aggregation functions with Numba
Provides: python-numbagg
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-numbagg
# Numbagg: Fast N-dimensional aggregation functions with Numba
[]((https://github.com/numbagg/numbagg/actions?query=workflow%3ATest))
[](https://pypi.python.org/pypi/numbagg/)
Fast, flexible N-dimensional array functions written with
[Numba](https://github.com/numba/numba) and NumPy's [generalized
ufuncs](http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html).
Currently accelerated functions:
- Array functions: `allnan`, `anynan`, `count`, `nanargmax`,
`nanargmin`, `nanmax`, `nanmean`, `nanstd`, `nanvar`, `nanmin`,
`nansum`
- Moving window functions: `move_exp_nanmean`, `move_mean`, `move_sum`
Note: Only functions listed here (exposed in Numbagg's top level namespace) are
supported as part of Numbagg's public API.
## Easy to extend
Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation
functions accelerated by Numba. All the hard work is done by Numba's JIT
compiler and NumPy's gufunc machinery (as wrapped by Numba).
For example, here is how we wrote `nansum`:
```python
import numpy as np
from numbagg.decorators import ndreduce
@ndreduce
def nansum(a):
asum = 0.0
for ai in a.flat:
if not np.isnan(ai):
asum += ai
return asum
```
You are welcome to experiment with Numbagg's decorator functions, but these are
not public APIs (yet): we reserve the right to change them at any time.
We'd rather get your pull requests to add new functions into Numbagg directly!
## Advantages over Bottleneck
- Way less code. Easier to add new functions. No ad-hoc templating
system. No Cython!
- Fast functions still work for >3 dimensions.
- `axis` argument handles tuples of integers.
Most of the functions in Numbagg (including our test suite) are adapted from
Bottleneck's battle-hardened implementations. Still, Numbagg is experimental,
and probably not yet ready for production.
## Benchmarks
Initial benchmarks are quite encouraging. Numbagg/Numba has comparable (slightly
better) performance than Bottleneck's hand-written C:
```python
import numbagg
import numpy as np
import bottleneck
x = np.random.RandomState(42).randn(1000, 1000)
x[x < -1] = np.NaN
# timings with numba=0.41.0 and bottleneck=1.2.1
In [2]: %timeit numbagg.nanmean(x)
1.8 ms ± 92.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [3]: %timeit numbagg.nanmean(x, axis=0)
3.63 ms ± 136 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [4]: %timeit numbagg.nanmean(x, axis=1)
1.81 ms ± 41 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [5]: %timeit bottleneck.nanmean(x)
2.22 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [6]: %timeit bottleneck.nanmean(x, axis=0)
4.45 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [7]: %timeit bottleneck.nanmean(x, axis=1)
2.19 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
## Our approach
Numbagg includes somewhat awkward workarounds for features missing from
NumPy/Numba:
- It implements its own cache for functions wrapped by Numba's
`guvectorize`, because that decorator is rather slow.
- It does its [own handling of array
transposes](https://github.com/numbagg/numbagg/blob/main/numbagg/decorators.py#L69)
to handle the `axis` argument, which we hope will [eventually be
directly supported](https://github.com/numpy/numpy/issues/5197) by
all NumPy gufuncs.
- It uses some [terrible
hacks](https://github.com/numbagg/numbagg/blob/main/numbagg/transform.py) to
hide the out-of-bound memory access necessary to write [gufuncs that handle
scalar
values](https://github.com/numba/numba/blob/main/numba/tests/test_guvectorize_scalar.py)
with Numba.
I hope that the need for most of these will eventually go away. In the meantime,
expect Numbagg to be tightly coupled to Numba and NumPy release cycles.
## License
3-clause BSD. Includes portions of Bottleneck, which is distributed under a
Simplified BSD license.
%package help
Summary: Development documents and examples for numbagg
Provides: python3-numbagg-doc
%description help
# Numbagg: Fast N-dimensional aggregation functions with Numba
[]((https://github.com/numbagg/numbagg/actions?query=workflow%3ATest))
[](https://pypi.python.org/pypi/numbagg/)
Fast, flexible N-dimensional array functions written with
[Numba](https://github.com/numba/numba) and NumPy's [generalized
ufuncs](http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html).
Currently accelerated functions:
- Array functions: `allnan`, `anynan`, `count`, `nanargmax`,
`nanargmin`, `nanmax`, `nanmean`, `nanstd`, `nanvar`, `nanmin`,
`nansum`
- Moving window functions: `move_exp_nanmean`, `move_mean`, `move_sum`
Note: Only functions listed here (exposed in Numbagg's top level namespace) are
supported as part of Numbagg's public API.
## Easy to extend
Numbagg makes it easy to write, in pure Python/NumPy, flexible aggregation
functions accelerated by Numba. All the hard work is done by Numba's JIT
compiler and NumPy's gufunc machinery (as wrapped by Numba).
For example, here is how we wrote `nansum`:
```python
import numpy as np
from numbagg.decorators import ndreduce
@ndreduce
def nansum(a):
asum = 0.0
for ai in a.flat:
if not np.isnan(ai):
asum += ai
return asum
```
You are welcome to experiment with Numbagg's decorator functions, but these are
not public APIs (yet): we reserve the right to change them at any time.
We'd rather get your pull requests to add new functions into Numbagg directly!
## Advantages over Bottleneck
- Way less code. Easier to add new functions. No ad-hoc templating
system. No Cython!
- Fast functions still work for >3 dimensions.
- `axis` argument handles tuples of integers.
Most of the functions in Numbagg (including our test suite) are adapted from
Bottleneck's battle-hardened implementations. Still, Numbagg is experimental,
and probably not yet ready for production.
## Benchmarks
Initial benchmarks are quite encouraging. Numbagg/Numba has comparable (slightly
better) performance than Bottleneck's hand-written C:
```python
import numbagg
import numpy as np
import bottleneck
x = np.random.RandomState(42).randn(1000, 1000)
x[x < -1] = np.NaN
# timings with numba=0.41.0 and bottleneck=1.2.1
In [2]: %timeit numbagg.nanmean(x)
1.8 ms ± 92.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [3]: %timeit numbagg.nanmean(x, axis=0)
3.63 ms ± 136 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [4]: %timeit numbagg.nanmean(x, axis=1)
1.81 ms ± 41 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [5]: %timeit bottleneck.nanmean(x)
2.22 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [6]: %timeit bottleneck.nanmean(x, axis=0)
4.45 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [7]: %timeit bottleneck.nanmean(x, axis=1)
2.19 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
## Our approach
Numbagg includes somewhat awkward workarounds for features missing from
NumPy/Numba:
- It implements its own cache for functions wrapped by Numba's
`guvectorize`, because that decorator is rather slow.
- It does its [own handling of array
transposes](https://github.com/numbagg/numbagg/blob/main/numbagg/decorators.py#L69)
to handle the `axis` argument, which we hope will [eventually be
directly supported](https://github.com/numpy/numpy/issues/5197) by
all NumPy gufuncs.
- It uses some [terrible
hacks](https://github.com/numbagg/numbagg/blob/main/numbagg/transform.py) to
hide the out-of-bound memory access necessary to write [gufuncs that handle
scalar
values](https://github.com/numba/numba/blob/main/numba/tests/test_guvectorize_scalar.py)
with Numba.
I hope that the need for most of these will eventually go away. In the meantime,
expect Numbagg to be tightly coupled to Numba and NumPy release cycles.
## License
3-clause BSD. Includes portions of Bottleneck, which is distributed under a
Simplified BSD license.
%prep
%autosetup -n numbagg-0.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-numbagg -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1
- Package Spec generated
|