1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
%global _empty_manifest_terminate_build 0
Name: python-objax
Version: 1.7.0
Release: 1
Summary: Objax is a machine learning framework that provides an Object Oriented layer for JAX.
License: Apache Software License
URL: https://github.com/google/objax
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bb/4f/dc2af2b8dfa76997fa65b9b261a63edd8c92badad2a12155f77792c24b48/objax-1.7.0.tar.gz
BuildArch: noarch
Requires: python3-scipy
Requires: python3-numpy
Requires: python3-pillow
Requires: python3-jaxlib
Requires: python3-jax
Requires: python3-tensorboard
Requires: python3-parameterized
%description
# Objax
[**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html)
| [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html)
| [**Documentation**](https://objax.readthedocs.io/en/latest/)
| [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy)
This is not an officially supported Google product.
Objax is an open source machine learning framework that accelerates research and learning thanks to a
minimalist object-oriented design and a readable code base.
Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance
framework.
Objax is designed **by researchers for researchers** with a focus on simplicity and understandability.
Its users should be able to easily read, understand, extend, and modify it to fit their needs.
This is the developer repository of Objax, there is very little user documentation
here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/).
You can find READMEs in the subdirectory of this project, for example:
* [Sample Code](examples/README.md)
* [Writing documentation](docs/README.md)
## User installation guide
You install Objax using `pip` as follows:
```bash
pip install --upgrade objax
```
Objax supports GPUs but assumes that you already have some version of CUDA
installed. Here are the extra steps required to install CUDA-enabled jaxlib
(jaxlib releases require CUDA 11.2 or newer):
```bash
RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html"
JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'`
pip uninstall -y jaxlib
pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION
```
For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda
### Useful environment configurations
Here are a few useful options:
```bash
# Prevent JAX from taking the whole GPU memory
# (useful if you want to run several programs on a single GPU)
export XLA_PYTHON_CLIENT_PREALLOCATE=false
```
### Testing your installation
You can test your installation by running the code below:
```python
import jax
import objax
print(f'Number of GPUs {jax.device_count()}')
x = objax.random.normal(shape=(100, 4))
m = objax.nn.Linear(nin=4, nout=5)
print('Matrix product shape', m(x).shape) # (100, 5)
x = objax.random.normal(shape=(100, 3, 32, 32))
m = objax.nn.Conv2D(nin=3, nout=4, k=3)
print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32)
```
Typically if you get errors running this using CUDA, it probably means your
installation of CUDA or CuDNN has issues.
### Runing code examples
Clone the code repository:
```bash
git clone https://github.com/google/objax.git
cd objax/examples
```
### Citing Objax
To cite this repository:
```
@software{objax2020github,
author = {{Objax Developers}},
title = {{Objax}},
url = {https://github.com/google/objax},
version = {1.2.0},
year = {2020},
}
```
## Developer documentation
Here is information about
[development setup](https://objax.readthedocs.io/en/latest/dev/setup.html)
and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html).
%package -n python3-objax
Summary: Objax is a machine learning framework that provides an Object Oriented layer for JAX.
Provides: python-objax
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-objax
# Objax
[**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html)
| [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html)
| [**Documentation**](https://objax.readthedocs.io/en/latest/)
| [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy)
This is not an officially supported Google product.
Objax is an open source machine learning framework that accelerates research and learning thanks to a
minimalist object-oriented design and a readable code base.
Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance
framework.
Objax is designed **by researchers for researchers** with a focus on simplicity and understandability.
Its users should be able to easily read, understand, extend, and modify it to fit their needs.
This is the developer repository of Objax, there is very little user documentation
here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/).
You can find READMEs in the subdirectory of this project, for example:
* [Sample Code](examples/README.md)
* [Writing documentation](docs/README.md)
## User installation guide
You install Objax using `pip` as follows:
```bash
pip install --upgrade objax
```
Objax supports GPUs but assumes that you already have some version of CUDA
installed. Here are the extra steps required to install CUDA-enabled jaxlib
(jaxlib releases require CUDA 11.2 or newer):
```bash
RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html"
JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'`
pip uninstall -y jaxlib
pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION
```
For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda
### Useful environment configurations
Here are a few useful options:
```bash
# Prevent JAX from taking the whole GPU memory
# (useful if you want to run several programs on a single GPU)
export XLA_PYTHON_CLIENT_PREALLOCATE=false
```
### Testing your installation
You can test your installation by running the code below:
```python
import jax
import objax
print(f'Number of GPUs {jax.device_count()}')
x = objax.random.normal(shape=(100, 4))
m = objax.nn.Linear(nin=4, nout=5)
print('Matrix product shape', m(x).shape) # (100, 5)
x = objax.random.normal(shape=(100, 3, 32, 32))
m = objax.nn.Conv2D(nin=3, nout=4, k=3)
print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32)
```
Typically if you get errors running this using CUDA, it probably means your
installation of CUDA or CuDNN has issues.
### Runing code examples
Clone the code repository:
```bash
git clone https://github.com/google/objax.git
cd objax/examples
```
### Citing Objax
To cite this repository:
```
@software{objax2020github,
author = {{Objax Developers}},
title = {{Objax}},
url = {https://github.com/google/objax},
version = {1.2.0},
year = {2020},
}
```
## Developer documentation
Here is information about
[development setup](https://objax.readthedocs.io/en/latest/dev/setup.html)
and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html).
%package help
Summary: Development documents and examples for objax
Provides: python3-objax-doc
%description help
# Objax
[**Tutorials**](https://objax.readthedocs.io/en/latest/notebooks/Objax_Basics.html)
| [**Install**](https://objax.readthedocs.io/en/latest/installation_setup.html)
| [**Documentation**](https://objax.readthedocs.io/en/latest/)
| [**Philosophy**](https://objax.readthedocs.io/en/latest/index.html#objax-philosophy)
This is not an officially supported Google product.
Objax is an open source machine learning framework that accelerates research and learning thanks to a
minimalist object-oriented design and a readable code base.
Its name comes from the contraction of Object and [JAX](https://github.com/google/jax) -- a popular high-performance
framework.
Objax is designed **by researchers for researchers** with a focus on simplicity and understandability.
Its users should be able to easily read, understand, extend, and modify it to fit their needs.
This is the developer repository of Objax, there is very little user documentation
here, for the full documentation go to [objax.readthedocs.io](https://objax.readthedocs.io/).
You can find READMEs in the subdirectory of this project, for example:
* [Sample Code](examples/README.md)
* [Writing documentation](docs/README.md)
## User installation guide
You install Objax using `pip` as follows:
```bash
pip install --upgrade objax
```
Objax supports GPUs but assumes that you already have some version of CUDA
installed. Here are the extra steps required to install CUDA-enabled jaxlib
(jaxlib releases require CUDA 11.2 or newer):
```bash
RELEASE_URL="https://storage.googleapis.com/jax-releases/jax_cuda_releases.html"
JAX_VERSION=`python3 -c 'import jax; print(jax.__version__)'`
pip uninstall -y jaxlib
pip install -f $RELEASE_URL jax[cuda]==$JAX_VERSION
```
For more installation options, see https://github.com/google/jax#pip-installation-gpu-cuda
### Useful environment configurations
Here are a few useful options:
```bash
# Prevent JAX from taking the whole GPU memory
# (useful if you want to run several programs on a single GPU)
export XLA_PYTHON_CLIENT_PREALLOCATE=false
```
### Testing your installation
You can test your installation by running the code below:
```python
import jax
import objax
print(f'Number of GPUs {jax.device_count()}')
x = objax.random.normal(shape=(100, 4))
m = objax.nn.Linear(nin=4, nout=5)
print('Matrix product shape', m(x).shape) # (100, 5)
x = objax.random.normal(shape=(100, 3, 32, 32))
m = objax.nn.Conv2D(nin=3, nout=4, k=3)
print('Conv2D return shape', m(x).shape) # (100, 4, 32, 32)
```
Typically if you get errors running this using CUDA, it probably means your
installation of CUDA or CuDNN has issues.
### Runing code examples
Clone the code repository:
```bash
git clone https://github.com/google/objax.git
cd objax/examples
```
### Citing Objax
To cite this repository:
```
@software{objax2020github,
author = {{Objax Developers}},
title = {{Objax}},
url = {https://github.com/google/objax},
version = {1.2.0},
year = {2020},
}
```
## Developer documentation
Here is information about
[development setup](https://objax.readthedocs.io/en/latest/dev/setup.html)
and a [guide on adding new code](https://objax.readthedocs.io/en/latest/dev/adding_module.html).
%prep
%autosetup -n objax-1.7.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-objax -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.7.0-1
- Package Spec generated
|