1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
|
%global _empty_manifest_terminate_build 0
Name: python-omikuji
Version: 0.5.0
Release: 1
Summary: Python binding to Omikuji, an efficient implementation of Partioned Label Trees and its variations for extreme multi-label classification
License: MIT
URL: https://github.com/tomtung/omikuji
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/56/fc/14fbe376d3a1c971fcc7e0a28ffe79d9bba50b00e621300671272cd941f4/omikuji-0.5.0.tar.gz
Requires: python3-milksnake
%description
# Omikuji
[](https://dev.azure.com/yubingdong/omikuji/_build/latest?definitionId=1&branchName=master) [](https://crates.io/crates/omikuji) [](https://pypi.org/project/omikuji/)
An efficient implementation of Partitioned Label Trees (Prabhu et al., 2018) and its variations for extreme multi-label classification, written in Rust🦀 with love💖.
## Features & Performance
Omikuji has has been tested on datasets from the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). All tests below are run on a quad-core Intel® Core™ i7-6700 CPU, and we allowed as many cores to be utilized as possible. We measured training time, and calculated precisions at 1, 3, and 5. (Note that, due to randomness, results might vary from run to run, especially for smaller datasets.)
### Parabel, better parallelized
Omikuji provides a more parallelized implementation of Parabel (Prabhu et al., 2018) that trains faster when more CPU cores are available. Compared to the [original implementation](http://manikvarma.org/code/Parabel/download.html) written in C++, which can only utilize the same number of CPU cores as the number of trees (3 by default), Omikuji maintains the same level of precision but trains 1.3x to 1.7x faster on our quad-core machine. **Further speed-up is possible if more CPU cores are available**.
| Dataset | Metric | Parabel | Omikuji<br/>(balanced,<br/>cluster.k=2) |
|----------------- |------------ |--------- |------------------------------------------ |
| EURLex-4K | P@1 | 82.2 | 82.1 |
| | P@3 | 68.8 | 68.8 |
| | P@5 | 57.6 | 57.7 |
| | Train Time | 18s | 14s |
| Amazon-670K | P@1 | 44.9 | 44.8 |
| | P@3 | 39.8 | 39.8 |
| | P@5 | 36.0 | 36.0 |
| | Train Time | 404s | 234s |
| WikiLSHTC-325K | P@1 | 65.0 | 64.8 |
| | P@3 | 43.2 | 43.1 |
| | P@5 | 32.0 | 32.1 |
| | Train Time | 959s | 659s |
### Regular k-means for shallow trees
Following Bonsai (Khandagale et al., 2019), Omikuji supports using regular k-means instead of balanced 2-means clustering for tree construction, which results in wider, shallower and unbalanced trees that train slower but have better precision. Comparing to the [original Bonsai implementation](https://github.com/xmc-aalto/bonsai), Omikuji also achieves the same precisions while training 2.6x to 4.6x faster on our quad-core machine. (Similarly, further speed-up is possible if more CPU cores are available.)
| Dataset | Metric | Bonsai | Omikuji<br/>(unbalanced,<br/>cluster.k=100,<br/>max\_depth=3) |
|----------------- |------------ |--------- |-------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.8 | 83.0 |
| | P@3 | 69.4 | 69.5 |
| | P@5 | 58.1 | 58.3 |
| | Train Time | 87s | 19s |
| Amazon-670K | P@1 | 45.5* | 45.6 |
| | P@3 | 40.3* | 40.4 |
| | P@5 | 36.5* | 36.6 |
| | Train Time | 5,759s | 1,753s |
| WikiLSHTC-325K | P@1 | 66.6* | 66.6 |
| | P@3 | 44.5* | 44.4 |
| | P@5 | 33.0* | 33.0 |
| | Train Time | 11,156s | 4,259s |
*\*Precision numbers as reported in the paper; our machine doesn't have enough memory to run the full prediction with their implementation.*
### Balanced k-means for balanced shallow trees
Sometimes it's desirable to have shallow and wide trees that are also balanced, in which case Omikuji supports the balanced k-means algorithm used by HOMER (Tsoumakas et al., 2008) for clustering as well.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=100) |
|----------------- |------------ |------------------------------------------ |
| EURLex-4K | P@1 | 82.1 |
| | P@3 | 69.4 |
| | P@5 | 58.1 |
| | Train Time | 19s |
| Amazon-670K | P@1 | 45.4 |
| | P@3 | 40.3 |
| | P@5 | 36.5 |
| | Train Time | 1,153s |
| WikiLSHTC-325K | P@1 | 65.6 |
| | P@3 | 43.6 |
| | P@5 | 32.5 |
| | Train Time | 3,028s |
### Layer collapsing for balanced shallow trees
An alternative way for building balanced, shallow and wide trees is to collapse adjacent layers, similar to the tree compression step used in AttentionXML (You et al., 2019): intermediate layers are removed, and their children replace them as the children of their parents. For example, with balanced 2-means clustering, if we collapse 5 layers after each layer, we can increase the tree arity from 2 to 2⁵⁺¹ = 64.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=2,<br/>collapse 5 layers) |
|----------------- |------------ |--------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.4 |
| | P@3 | 69.3 |
| | P@5 | 58.0 |
| | Train Time | 16s |
| Amazon-670K | P@1 | 45.3 |
| | P@3 | 40.2 |
| | P@5 | 36.4 |
| | Train Time | 460s |
| WikiLSHTC-325K | P@1 | 64.9 |
| | P@3 | 43.3 |
| | P@5 | 32.3 |
| | Train Time | 1,649s |
## Build & Install
Omikuji can be easily built & installed with [Cargo](https://doc.rust-lang.org/cargo/getting-started/installation.html) as a CLI app:
```
cargo install omikuji --features cli
```
Or install from the latest source:
```
cargo install --git https://github.com/tomtung/omikuji.git --features cli
```
The CLI app will be available as `omikuji`. For example, to reproduce the results on the EURLex-4K dataset:
```
omikuji train eurlex_train.txt --model_path ./model
omikuji test ./model eurlex_test.txt --out_path predictions.txt
```
### Python Binding
A simple Python binding is also available for training and prediction. It can be install via `pip`:
```
pip install omikuji
```
Note that you might still need to install Cargo should compilation become necessary.
You can also install from the latest source:
```
pip install git+https://github.com/tomtung/omikuji.git -v
```
The following script demonstrates how to use the Python binding to train a model and make predictions:
```python
import omikuji
# Train
hyper_param = omikuji.Model.default_hyper_param()
# Adjust hyper-parameters as needed
hyper_param.n_trees = 5
model = omikuji.Model.train_on_data("./eurlex_train.txt", hyper_param)
# Serialize & de-serialize
model.save("./model")
model = omikuji.Model.load("./model")
# Optionally densify model weights to trade off between prediction speed and memory usage
model.densify_weights(0.05)
# Predict
feature_value_pairs = [
(0, 0.101468),
(1, 0.554374),
(2, 0.235760),
(3, 0.065255),
(8, 0.152305),
(10, 0.155051),
# ...
]
label_score_pairs = model.predict(feature_value_pairs)
```
## Usage
```
$ omikuji train --help
Train a new omikuji model
USAGE:
omikuji train [OPTIONS] <TRAINING_DATA_PATH>
ARGS:
<TRAINING_DATA_PATH>
Path to training dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--centroid_threshold <THRESHOLD>
Threshold for pruning label centroid vectors
[default: 0]
--cluster.eps <CLUSTER_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.0001]
--cluster.k <K>
Number of clusters
[default: 2]
--cluster.min_size <MIN_SIZE>
Labels in clusters with sizes smaller than this threshold are reassigned to other
clusters instead
[default: 2]
--cluster.unbalanced
Perform regular k-means clustering instead of balanced k-means clustering
--collapse_every_n_layers <N_LAYERS>
Number of adjacent layers to collapse
This increases tree arity and decreases tree depth.
[default: 0]
-h, --help
Print help information
--linear.c <C>
Cost coefficient for regularizing linear classifiers
[default: 1]
--linear.eps <LINEAR_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.1]
--linear.loss <LOSS>
Loss function used by linear classifiers
[default: hinge]
[possible values: hinge, log]
--linear.max_iter <M>
Max number of iterations for training each linear classifier
[default: 20]
--linear.weight_threshold <MIN_WEIGHT>
Threshold for pruning weight vectors of linear classifiers
[default: 0.1]
--max_depth <DEPTH>
Maximum tree depth
[default: 20]
--min_branch_size <SIZE>
Number of labels below which no further clustering & branching is done
[default: 100]
--model_path <MODEL_PATH>
Optional path of the directory where the trained model will be saved if provided
If an model with compatible settings is already saved in the given directory, the newly
trained trees will be added to the existing model")
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--n_trees <N_TREES>
Number of trees
[default: 3]
--train_trees_1_by_1
Finish training each tree before start training the next
This limits initial parallelization but saves memory.
--tree_structure_only
Build the trees without training classifiers
Might be useful when a downstream user needs the tree structures only.
```
```
$ omikuji test --help
Test an existing omikuji model
USAGE:
omikuji test [OPTIONS] <MODEL_PATH> <TEST_DATA_PATH>
ARGS:
<MODEL_PATH>
Path of the directory where the trained model is saved
<TEST_DATA_PATH>
Path to test dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--beam_size <BEAM_SIZE>
Beam size for beam search
[default: 10]
-h, --help
Print help information
--k_top <K>
Number of top predictions to write out for each test example
[default: 5]
--max_sparse_density <DENSITY>
Density threshold above which sparse weight vectors are converted to dense format
Lower values speed up prediction at the cost of more memory usage.
[default: 0.1]
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--out_path <OUT_PATH>
Path to the which predictions will be written, if provided
```
### Data format
Our implementation takes dataset files formatted as those provided in the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). A data file starts with a header line with three space-separated integers: total number of examples, number of features, and number of labels. Following the header line, there is one line per each example, starting with comma-separated labels, followed by space-separated feature:value pairs:
```
label1,label2,...labelk ft1:ft1_val ft2:ft2_val ft3:ft3_val .. ftd:ftd_val
```
## Trivia
The project name comes from [o-mikuji](https://en.wikipedia.org/wiki/O-mikuji) (御神籤), which are predictions about one's future written on strips of paper (labels?) at jinjas and temples in Japan, often tied to branches of pine trees after they are read.
## References
- Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma, “Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 993–1002.
- S. Khandagale, H. Xiao, and R. Babbar, “Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification,” Apr. 2019.
- G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient multilabel classification in domains with large number of labels,” ECML, 2008.
- R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu, “AttentionXML: Extreme Multi-Label Text Classification with Multi-Label Attention Based Recurrent Neural Networks,” Jun. 2019.
## License
Omikuji is licensed under the MIT License.
%package -n python3-omikuji
Summary: Python binding to Omikuji, an efficient implementation of Partioned Label Trees and its variations for extreme multi-label classification
Provides: python-omikuji
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-omikuji
# Omikuji
[](https://dev.azure.com/yubingdong/omikuji/_build/latest?definitionId=1&branchName=master) [](https://crates.io/crates/omikuji) [](https://pypi.org/project/omikuji/)
An efficient implementation of Partitioned Label Trees (Prabhu et al., 2018) and its variations for extreme multi-label classification, written in Rust🦀 with love💖.
## Features & Performance
Omikuji has has been tested on datasets from the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). All tests below are run on a quad-core Intel® Core™ i7-6700 CPU, and we allowed as many cores to be utilized as possible. We measured training time, and calculated precisions at 1, 3, and 5. (Note that, due to randomness, results might vary from run to run, especially for smaller datasets.)
### Parabel, better parallelized
Omikuji provides a more parallelized implementation of Parabel (Prabhu et al., 2018) that trains faster when more CPU cores are available. Compared to the [original implementation](http://manikvarma.org/code/Parabel/download.html) written in C++, which can only utilize the same number of CPU cores as the number of trees (3 by default), Omikuji maintains the same level of precision but trains 1.3x to 1.7x faster on our quad-core machine. **Further speed-up is possible if more CPU cores are available**.
| Dataset | Metric | Parabel | Omikuji<br/>(balanced,<br/>cluster.k=2) |
|----------------- |------------ |--------- |------------------------------------------ |
| EURLex-4K | P@1 | 82.2 | 82.1 |
| | P@3 | 68.8 | 68.8 |
| | P@5 | 57.6 | 57.7 |
| | Train Time | 18s | 14s |
| Amazon-670K | P@1 | 44.9 | 44.8 |
| | P@3 | 39.8 | 39.8 |
| | P@5 | 36.0 | 36.0 |
| | Train Time | 404s | 234s |
| WikiLSHTC-325K | P@1 | 65.0 | 64.8 |
| | P@3 | 43.2 | 43.1 |
| | P@5 | 32.0 | 32.1 |
| | Train Time | 959s | 659s |
### Regular k-means for shallow trees
Following Bonsai (Khandagale et al., 2019), Omikuji supports using regular k-means instead of balanced 2-means clustering for tree construction, which results in wider, shallower and unbalanced trees that train slower but have better precision. Comparing to the [original Bonsai implementation](https://github.com/xmc-aalto/bonsai), Omikuji also achieves the same precisions while training 2.6x to 4.6x faster on our quad-core machine. (Similarly, further speed-up is possible if more CPU cores are available.)
| Dataset | Metric | Bonsai | Omikuji<br/>(unbalanced,<br/>cluster.k=100,<br/>max\_depth=3) |
|----------------- |------------ |--------- |-------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.8 | 83.0 |
| | P@3 | 69.4 | 69.5 |
| | P@5 | 58.1 | 58.3 |
| | Train Time | 87s | 19s |
| Amazon-670K | P@1 | 45.5* | 45.6 |
| | P@3 | 40.3* | 40.4 |
| | P@5 | 36.5* | 36.6 |
| | Train Time | 5,759s | 1,753s |
| WikiLSHTC-325K | P@1 | 66.6* | 66.6 |
| | P@3 | 44.5* | 44.4 |
| | P@5 | 33.0* | 33.0 |
| | Train Time | 11,156s | 4,259s |
*\*Precision numbers as reported in the paper; our machine doesn't have enough memory to run the full prediction with their implementation.*
### Balanced k-means for balanced shallow trees
Sometimes it's desirable to have shallow and wide trees that are also balanced, in which case Omikuji supports the balanced k-means algorithm used by HOMER (Tsoumakas et al., 2008) for clustering as well.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=100) |
|----------------- |------------ |------------------------------------------ |
| EURLex-4K | P@1 | 82.1 |
| | P@3 | 69.4 |
| | P@5 | 58.1 |
| | Train Time | 19s |
| Amazon-670K | P@1 | 45.4 |
| | P@3 | 40.3 |
| | P@5 | 36.5 |
| | Train Time | 1,153s |
| WikiLSHTC-325K | P@1 | 65.6 |
| | P@3 | 43.6 |
| | P@5 | 32.5 |
| | Train Time | 3,028s |
### Layer collapsing for balanced shallow trees
An alternative way for building balanced, shallow and wide trees is to collapse adjacent layers, similar to the tree compression step used in AttentionXML (You et al., 2019): intermediate layers are removed, and their children replace them as the children of their parents. For example, with balanced 2-means clustering, if we collapse 5 layers after each layer, we can increase the tree arity from 2 to 2⁵⁺¹ = 64.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=2,<br/>collapse 5 layers) |
|----------------- |------------ |--------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.4 |
| | P@3 | 69.3 |
| | P@5 | 58.0 |
| | Train Time | 16s |
| Amazon-670K | P@1 | 45.3 |
| | P@3 | 40.2 |
| | P@5 | 36.4 |
| | Train Time | 460s |
| WikiLSHTC-325K | P@1 | 64.9 |
| | P@3 | 43.3 |
| | P@5 | 32.3 |
| | Train Time | 1,649s |
## Build & Install
Omikuji can be easily built & installed with [Cargo](https://doc.rust-lang.org/cargo/getting-started/installation.html) as a CLI app:
```
cargo install omikuji --features cli
```
Or install from the latest source:
```
cargo install --git https://github.com/tomtung/omikuji.git --features cli
```
The CLI app will be available as `omikuji`. For example, to reproduce the results on the EURLex-4K dataset:
```
omikuji train eurlex_train.txt --model_path ./model
omikuji test ./model eurlex_test.txt --out_path predictions.txt
```
### Python Binding
A simple Python binding is also available for training and prediction. It can be install via `pip`:
```
pip install omikuji
```
Note that you might still need to install Cargo should compilation become necessary.
You can also install from the latest source:
```
pip install git+https://github.com/tomtung/omikuji.git -v
```
The following script demonstrates how to use the Python binding to train a model and make predictions:
```python
import omikuji
# Train
hyper_param = omikuji.Model.default_hyper_param()
# Adjust hyper-parameters as needed
hyper_param.n_trees = 5
model = omikuji.Model.train_on_data("./eurlex_train.txt", hyper_param)
# Serialize & de-serialize
model.save("./model")
model = omikuji.Model.load("./model")
# Optionally densify model weights to trade off between prediction speed and memory usage
model.densify_weights(0.05)
# Predict
feature_value_pairs = [
(0, 0.101468),
(1, 0.554374),
(2, 0.235760),
(3, 0.065255),
(8, 0.152305),
(10, 0.155051),
# ...
]
label_score_pairs = model.predict(feature_value_pairs)
```
## Usage
```
$ omikuji train --help
Train a new omikuji model
USAGE:
omikuji train [OPTIONS] <TRAINING_DATA_PATH>
ARGS:
<TRAINING_DATA_PATH>
Path to training dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--centroid_threshold <THRESHOLD>
Threshold for pruning label centroid vectors
[default: 0]
--cluster.eps <CLUSTER_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.0001]
--cluster.k <K>
Number of clusters
[default: 2]
--cluster.min_size <MIN_SIZE>
Labels in clusters with sizes smaller than this threshold are reassigned to other
clusters instead
[default: 2]
--cluster.unbalanced
Perform regular k-means clustering instead of balanced k-means clustering
--collapse_every_n_layers <N_LAYERS>
Number of adjacent layers to collapse
This increases tree arity and decreases tree depth.
[default: 0]
-h, --help
Print help information
--linear.c <C>
Cost coefficient for regularizing linear classifiers
[default: 1]
--linear.eps <LINEAR_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.1]
--linear.loss <LOSS>
Loss function used by linear classifiers
[default: hinge]
[possible values: hinge, log]
--linear.max_iter <M>
Max number of iterations for training each linear classifier
[default: 20]
--linear.weight_threshold <MIN_WEIGHT>
Threshold for pruning weight vectors of linear classifiers
[default: 0.1]
--max_depth <DEPTH>
Maximum tree depth
[default: 20]
--min_branch_size <SIZE>
Number of labels below which no further clustering & branching is done
[default: 100]
--model_path <MODEL_PATH>
Optional path of the directory where the trained model will be saved if provided
If an model with compatible settings is already saved in the given directory, the newly
trained trees will be added to the existing model")
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--n_trees <N_TREES>
Number of trees
[default: 3]
--train_trees_1_by_1
Finish training each tree before start training the next
This limits initial parallelization but saves memory.
--tree_structure_only
Build the trees without training classifiers
Might be useful when a downstream user needs the tree structures only.
```
```
$ omikuji test --help
Test an existing omikuji model
USAGE:
omikuji test [OPTIONS] <MODEL_PATH> <TEST_DATA_PATH>
ARGS:
<MODEL_PATH>
Path of the directory where the trained model is saved
<TEST_DATA_PATH>
Path to test dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--beam_size <BEAM_SIZE>
Beam size for beam search
[default: 10]
-h, --help
Print help information
--k_top <K>
Number of top predictions to write out for each test example
[default: 5]
--max_sparse_density <DENSITY>
Density threshold above which sparse weight vectors are converted to dense format
Lower values speed up prediction at the cost of more memory usage.
[default: 0.1]
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--out_path <OUT_PATH>
Path to the which predictions will be written, if provided
```
### Data format
Our implementation takes dataset files formatted as those provided in the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). A data file starts with a header line with three space-separated integers: total number of examples, number of features, and number of labels. Following the header line, there is one line per each example, starting with comma-separated labels, followed by space-separated feature:value pairs:
```
label1,label2,...labelk ft1:ft1_val ft2:ft2_val ft3:ft3_val .. ftd:ftd_val
```
## Trivia
The project name comes from [o-mikuji](https://en.wikipedia.org/wiki/O-mikuji) (御神籤), which are predictions about one's future written on strips of paper (labels?) at jinjas and temples in Japan, often tied to branches of pine trees after they are read.
## References
- Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma, “Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 993–1002.
- S. Khandagale, H. Xiao, and R. Babbar, “Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification,” Apr. 2019.
- G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient multilabel classification in domains with large number of labels,” ECML, 2008.
- R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu, “AttentionXML: Extreme Multi-Label Text Classification with Multi-Label Attention Based Recurrent Neural Networks,” Jun. 2019.
## License
Omikuji is licensed under the MIT License.
%package help
Summary: Development documents and examples for omikuji
Provides: python3-omikuji-doc
%description help
# Omikuji
[](https://dev.azure.com/yubingdong/omikuji/_build/latest?definitionId=1&branchName=master) [](https://crates.io/crates/omikuji) [](https://pypi.org/project/omikuji/)
An efficient implementation of Partitioned Label Trees (Prabhu et al., 2018) and its variations for extreme multi-label classification, written in Rust🦀 with love💖.
## Features & Performance
Omikuji has has been tested on datasets from the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). All tests below are run on a quad-core Intel® Core™ i7-6700 CPU, and we allowed as many cores to be utilized as possible. We measured training time, and calculated precisions at 1, 3, and 5. (Note that, due to randomness, results might vary from run to run, especially for smaller datasets.)
### Parabel, better parallelized
Omikuji provides a more parallelized implementation of Parabel (Prabhu et al., 2018) that trains faster when more CPU cores are available. Compared to the [original implementation](http://manikvarma.org/code/Parabel/download.html) written in C++, which can only utilize the same number of CPU cores as the number of trees (3 by default), Omikuji maintains the same level of precision but trains 1.3x to 1.7x faster on our quad-core machine. **Further speed-up is possible if more CPU cores are available**.
| Dataset | Metric | Parabel | Omikuji<br/>(balanced,<br/>cluster.k=2) |
|----------------- |------------ |--------- |------------------------------------------ |
| EURLex-4K | P@1 | 82.2 | 82.1 |
| | P@3 | 68.8 | 68.8 |
| | P@5 | 57.6 | 57.7 |
| | Train Time | 18s | 14s |
| Amazon-670K | P@1 | 44.9 | 44.8 |
| | P@3 | 39.8 | 39.8 |
| | P@5 | 36.0 | 36.0 |
| | Train Time | 404s | 234s |
| WikiLSHTC-325K | P@1 | 65.0 | 64.8 |
| | P@3 | 43.2 | 43.1 |
| | P@5 | 32.0 | 32.1 |
| | Train Time | 959s | 659s |
### Regular k-means for shallow trees
Following Bonsai (Khandagale et al., 2019), Omikuji supports using regular k-means instead of balanced 2-means clustering for tree construction, which results in wider, shallower and unbalanced trees that train slower but have better precision. Comparing to the [original Bonsai implementation](https://github.com/xmc-aalto/bonsai), Omikuji also achieves the same precisions while training 2.6x to 4.6x faster on our quad-core machine. (Similarly, further speed-up is possible if more CPU cores are available.)
| Dataset | Metric | Bonsai | Omikuji<br/>(unbalanced,<br/>cluster.k=100,<br/>max\_depth=3) |
|----------------- |------------ |--------- |-------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.8 | 83.0 |
| | P@3 | 69.4 | 69.5 |
| | P@5 | 58.1 | 58.3 |
| | Train Time | 87s | 19s |
| Amazon-670K | P@1 | 45.5* | 45.6 |
| | P@3 | 40.3* | 40.4 |
| | P@5 | 36.5* | 36.6 |
| | Train Time | 5,759s | 1,753s |
| WikiLSHTC-325K | P@1 | 66.6* | 66.6 |
| | P@3 | 44.5* | 44.4 |
| | P@5 | 33.0* | 33.0 |
| | Train Time | 11,156s | 4,259s |
*\*Precision numbers as reported in the paper; our machine doesn't have enough memory to run the full prediction with their implementation.*
### Balanced k-means for balanced shallow trees
Sometimes it's desirable to have shallow and wide trees that are also balanced, in which case Omikuji supports the balanced k-means algorithm used by HOMER (Tsoumakas et al., 2008) for clustering as well.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=100) |
|----------------- |------------ |------------------------------------------ |
| EURLex-4K | P@1 | 82.1 |
| | P@3 | 69.4 |
| | P@5 | 58.1 |
| | Train Time | 19s |
| Amazon-670K | P@1 | 45.4 |
| | P@3 | 40.3 |
| | P@5 | 36.5 |
| | Train Time | 1,153s |
| WikiLSHTC-325K | P@1 | 65.6 |
| | P@3 | 43.6 |
| | P@5 | 32.5 |
| | Train Time | 3,028s |
### Layer collapsing for balanced shallow trees
An alternative way for building balanced, shallow and wide trees is to collapse adjacent layers, similar to the tree compression step used in AttentionXML (You et al., 2019): intermediate layers are removed, and their children replace them as the children of their parents. For example, with balanced 2-means clustering, if we collapse 5 layers after each layer, we can increase the tree arity from 2 to 2⁵⁺¹ = 64.
| Dataset | Metric | Omikuji<br/>(balanced,<br/>cluster.k=2,<br/>collapse 5 layers) |
|----------------- |------------ |--------------------------------------------------------------- |
| EURLex-4K | P@1 | 82.4 |
| | P@3 | 69.3 |
| | P@5 | 58.0 |
| | Train Time | 16s |
| Amazon-670K | P@1 | 45.3 |
| | P@3 | 40.2 |
| | P@5 | 36.4 |
| | Train Time | 460s |
| WikiLSHTC-325K | P@1 | 64.9 |
| | P@3 | 43.3 |
| | P@5 | 32.3 |
| | Train Time | 1,649s |
## Build & Install
Omikuji can be easily built & installed with [Cargo](https://doc.rust-lang.org/cargo/getting-started/installation.html) as a CLI app:
```
cargo install omikuji --features cli
```
Or install from the latest source:
```
cargo install --git https://github.com/tomtung/omikuji.git --features cli
```
The CLI app will be available as `omikuji`. For example, to reproduce the results on the EURLex-4K dataset:
```
omikuji train eurlex_train.txt --model_path ./model
omikuji test ./model eurlex_test.txt --out_path predictions.txt
```
### Python Binding
A simple Python binding is also available for training and prediction. It can be install via `pip`:
```
pip install omikuji
```
Note that you might still need to install Cargo should compilation become necessary.
You can also install from the latest source:
```
pip install git+https://github.com/tomtung/omikuji.git -v
```
The following script demonstrates how to use the Python binding to train a model and make predictions:
```python
import omikuji
# Train
hyper_param = omikuji.Model.default_hyper_param()
# Adjust hyper-parameters as needed
hyper_param.n_trees = 5
model = omikuji.Model.train_on_data("./eurlex_train.txt", hyper_param)
# Serialize & de-serialize
model.save("./model")
model = omikuji.Model.load("./model")
# Optionally densify model weights to trade off between prediction speed and memory usage
model.densify_weights(0.05)
# Predict
feature_value_pairs = [
(0, 0.101468),
(1, 0.554374),
(2, 0.235760),
(3, 0.065255),
(8, 0.152305),
(10, 0.155051),
# ...
]
label_score_pairs = model.predict(feature_value_pairs)
```
## Usage
```
$ omikuji train --help
Train a new omikuji model
USAGE:
omikuji train [OPTIONS] <TRAINING_DATA_PATH>
ARGS:
<TRAINING_DATA_PATH>
Path to training dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--centroid_threshold <THRESHOLD>
Threshold for pruning label centroid vectors
[default: 0]
--cluster.eps <CLUSTER_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.0001]
--cluster.k <K>
Number of clusters
[default: 2]
--cluster.min_size <MIN_SIZE>
Labels in clusters with sizes smaller than this threshold are reassigned to other
clusters instead
[default: 2]
--cluster.unbalanced
Perform regular k-means clustering instead of balanced k-means clustering
--collapse_every_n_layers <N_LAYERS>
Number of adjacent layers to collapse
This increases tree arity and decreases tree depth.
[default: 0]
-h, --help
Print help information
--linear.c <C>
Cost coefficient for regularizing linear classifiers
[default: 1]
--linear.eps <LINEAR_EPS>
Epsilon value for determining linear classifier convergence
[default: 0.1]
--linear.loss <LOSS>
Loss function used by linear classifiers
[default: hinge]
[possible values: hinge, log]
--linear.max_iter <M>
Max number of iterations for training each linear classifier
[default: 20]
--linear.weight_threshold <MIN_WEIGHT>
Threshold for pruning weight vectors of linear classifiers
[default: 0.1]
--max_depth <DEPTH>
Maximum tree depth
[default: 20]
--min_branch_size <SIZE>
Number of labels below which no further clustering & branching is done
[default: 100]
--model_path <MODEL_PATH>
Optional path of the directory where the trained model will be saved if provided
If an model with compatible settings is already saved in the given directory, the newly
trained trees will be added to the existing model")
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--n_trees <N_TREES>
Number of trees
[default: 3]
--train_trees_1_by_1
Finish training each tree before start training the next
This limits initial parallelization but saves memory.
--tree_structure_only
Build the trees without training classifiers
Might be useful when a downstream user needs the tree structures only.
```
```
$ omikuji test --help
Test an existing omikuji model
USAGE:
omikuji test [OPTIONS] <MODEL_PATH> <TEST_DATA_PATH>
ARGS:
<MODEL_PATH>
Path of the directory where the trained model is saved
<TEST_DATA_PATH>
Path to test dataset file
The dataset file is expected to be in the format of the Extreme Classification
Repository.
OPTIONS:
--beam_size <BEAM_SIZE>
Beam size for beam search
[default: 10]
-h, --help
Print help information
--k_top <K>
Number of top predictions to write out for each test example
[default: 5]
--max_sparse_density <DENSITY>
Density threshold above which sparse weight vectors are converted to dense format
Lower values speed up prediction at the cost of more memory usage.
[default: 0.1]
--n_threads <N_THREADS>
Number of worker threads
If 0, the number is selected automatically.
[default: 0]
--out_path <OUT_PATH>
Path to the which predictions will be written, if provided
```
### Data format
Our implementation takes dataset files formatted as those provided in the [Extreme Classification Repository](http://manikvarma.org/downloads/XC/XMLRepository.html). A data file starts with a header line with three space-separated integers: total number of examples, number of features, and number of labels. Following the header line, there is one line per each example, starting with comma-separated labels, followed by space-separated feature:value pairs:
```
label1,label2,...labelk ft1:ft1_val ft2:ft2_val ft3:ft3_val .. ftd:ftd_val
```
## Trivia
The project name comes from [o-mikuji](https://en.wikipedia.org/wiki/O-mikuji) (御神籤), which are predictions about one's future written on strips of paper (labels?) at jinjas and temples in Japan, often tied to branches of pine trees after they are read.
## References
- Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma, “Parabel: Partitioned Label Trees for Extreme Classification with Application to Dynamic Search Advertising,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 993–1002.
- S. Khandagale, H. Xiao, and R. Babbar, “Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification,” Apr. 2019.
- G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient multilabel classification in domains with large number of labels,” ECML, 2008.
- R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu, “AttentionXML: Extreme Multi-Label Text Classification with Multi-Label Attention Based Recurrent Neural Networks,” Jun. 2019.
## License
Omikuji is licensed under the MIT License.
%prep
%autosetup -n omikuji-0.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-omikuji -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
- Package Spec generated
|