diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-12 02:00:32 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-12 02:00:32 +0000 |
| commit | 96420eb2b10849544804a2f0a8cc7eff53abd0db (patch) | |
| tree | ba63662c674823bd1dc4d70ed0b385baf242847b | |
| parent | 0756805611796301664f238b3718321d7cc41279 (diff) | |
automatic import of python-omnis
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-omnis.spec | 150 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 152 insertions, 0 deletions
@@ -0,0 +1 @@ +/Omnis-0.0.10.42.tar.gz diff --git a/python-omnis.spec b/python-omnis.spec new file mode 100644 index 0000000..7b4d901 --- /dev/null +++ b/python-omnis.spec @@ -0,0 +1,150 @@ +%global _empty_manifest_terminate_build 0 +Name: python-Omnis +Version: 0.0.10.42 +Release: 1 +Summary: Deep Learning for everyone +License: MIT License +URL: https://github.com/omnis-labs-company/omnis +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/9c/62b024b501914ff0c064bcc3045d50e434dc9f5e0a5f3eaf14ea4e853738/Omnis-0.0.10.42.tar.gz +BuildArch: noarch + + +%description +## Getting started: Implement a deep learning application with 4 lines of code! +The core data structure of Omnis is Application which is designed to be easy to use in each field. +Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: +```python +from omnis.application.image_processing.image_classification.image_classification import ImageClassification +``` +Choose an application: +```python +image_classifier = ImageClassification() +``` +Train: +```python +image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') +``` +Now you can use the application to classify images: +```python +prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') +print(prediction_result) +``` +Save / Load: +```python +image_classifier.save(model_path="weights.h5") +``` +```python +image_classifier = ImageClassification(model_path="weights.h5") +``` +For a more in-depth tutorial about Omnis, you can check out: + +%package -n python3-Omnis +Summary: Deep Learning for everyone +Provides: python-Omnis +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-Omnis +## Getting started: Implement a deep learning application with 4 lines of code! +The core data structure of Omnis is Application which is designed to be easy to use in each field. +Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: +```python +from omnis.application.image_processing.image_classification.image_classification import ImageClassification +``` +Choose an application: +```python +image_classifier = ImageClassification() +``` +Train: +```python +image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') +``` +Now you can use the application to classify images: +```python +prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') +print(prediction_result) +``` +Save / Load: +```python +image_classifier.save(model_path="weights.h5") +``` +```python +image_classifier = ImageClassification(model_path="weights.h5") +``` +For a more in-depth tutorial about Omnis, you can check out: + +%package help +Summary: Development documents and examples for Omnis +Provides: python3-Omnis-doc +%description help +## Getting started: Implement a deep learning application with 4 lines of code! +The core data structure of Omnis is Application which is designed to be easy to use in each field. +Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset: +```python +from omnis.application.image_processing.image_classification.image_classification import ImageClassification +``` +Choose an application: +```python +image_classifier = ImageClassification() +``` +Train: +```python +image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121') +``` +Now you can use the application to classify images: +```python +prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion') +print(prediction_result) +``` +Save / Load: +```python +image_classifier.save(model_path="weights.h5") +``` +```python +image_classifier = ImageClassification(model_path="weights.h5") +``` +For a more in-depth tutorial about Omnis, you can check out: + +%prep +%autosetup -n Omnis-0.0.10.42 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-Omnis -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.10.42-1 +- Package Spec generated @@ -0,0 +1 @@ +010d4dbbba05aca4fccb817feae267c8 Omnis-0.0.10.42.tar.gz |
