summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-12 02:00:32 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-12 02:00:32 +0000
commit96420eb2b10849544804a2f0a8cc7eff53abd0db (patch)
treeba63662c674823bd1dc4d70ed0b385baf242847b
parent0756805611796301664f238b3718321d7cc41279 (diff)
automatic import of python-omnis
-rw-r--r--.gitignore1
-rw-r--r--python-omnis.spec150
-rw-r--r--sources1
3 files changed, 152 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..37c528a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/Omnis-0.0.10.42.tar.gz
diff --git a/python-omnis.spec b/python-omnis.spec
new file mode 100644
index 0000000..7b4d901
--- /dev/null
+++ b/python-omnis.spec
@@ -0,0 +1,150 @@
+%global _empty_manifest_terminate_build 0
+Name: python-Omnis
+Version: 0.0.10.42
+Release: 1
+Summary: Deep Learning for everyone
+License: MIT License
+URL: https://github.com/omnis-labs-company/omnis
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/9c/62b024b501914ff0c064bcc3045d50e434dc9f5e0a5f3eaf14ea4e853738/Omnis-0.0.10.42.tar.gz
+BuildArch: noarch
+
+
+%description
+## Getting started: Implement a deep learning application with 4 lines of code!
+The core data structure of Omnis is Application which is designed to be easy to use in each field.
+Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
+```python
+from omnis.application.image_processing.image_classification.image_classification import ImageClassification
+```
+Choose an application:
+```python
+image_classifier = ImageClassification()
+```
+Train:
+```python
+image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
+```
+Now you can use the application to classify images:
+```python
+prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
+print(prediction_result)
+```
+Save / Load:
+```python
+image_classifier.save(model_path="weights.h5")
+```
+```python
+image_classifier = ImageClassification(model_path="weights.h5")
+```
+For a more in-depth tutorial about Omnis, you can check out:
+
+%package -n python3-Omnis
+Summary: Deep Learning for everyone
+Provides: python-Omnis
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-Omnis
+## Getting started: Implement a deep learning application with 4 lines of code!
+The core data structure of Omnis is Application which is designed to be easy to use in each field.
+Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
+```python
+from omnis.application.image_processing.image_classification.image_classification import ImageClassification
+```
+Choose an application:
+```python
+image_classifier = ImageClassification()
+```
+Train:
+```python
+image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
+```
+Now you can use the application to classify images:
+```python
+prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
+print(prediction_result)
+```
+Save / Load:
+```python
+image_classifier.save(model_path="weights.h5")
+```
+```python
+image_classifier = ImageClassification(model_path="weights.h5")
+```
+For a more in-depth tutorial about Omnis, you can check out:
+
+%package help
+Summary: Development documents and examples for Omnis
+Provides: python3-Omnis-doc
+%description help
+## Getting started: Implement a deep learning application with 4 lines of code!
+The core data structure of Omnis is Application which is designed to be easy to use in each field.
+Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
+```python
+from omnis.application.image_processing.image_classification.image_classification import ImageClassification
+```
+Choose an application:
+```python
+image_classifier = ImageClassification()
+```
+Train:
+```python
+image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
+```
+Now you can use the application to classify images:
+```python
+prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
+print(prediction_result)
+```
+Save / Load:
+```python
+image_classifier.save(model_path="weights.h5")
+```
+```python
+image_classifier = ImageClassification(model_path="weights.h5")
+```
+For a more in-depth tutorial about Omnis, you can check out:
+
+%prep
+%autosetup -n Omnis-0.0.10.42
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-Omnis -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.10.42-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..c731b5d
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+010d4dbbba05aca4fccb817feae267c8 Omnis-0.0.10.42.tar.gz