summaryrefslogtreecommitdiff
path: root/python-omnis.spec
blob: deed8f2364321c72d163e7ec7fb27ca31563d728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
%global _empty_manifest_terminate_build 0
Name:		python-Omnis
Version:	0.0.10.42
Release:	1
Summary:	Deep Learning for everyone
License:	MIT License
URL:		https://github.com/omnis-labs-company/omnis
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/01/9c/62b024b501914ff0c064bcc3045d50e434dc9f5e0a5f3eaf14ea4e853738/Omnis-0.0.10.42.tar.gz
BuildArch:	noarch


%description
## Getting started: Implement a deep learning application with 4 lines of code!
The core data structure of Omnis is Application which is designed to be easy to use in each field.
Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
```python
from omnis.application.image_processing.image_classification.image_classification import ImageClassification
```
Choose an application:
```python
image_classifier = ImageClassification()
```
Train:
```python
image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
```
Now you can use the application to classify images:
```python
prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
print(prediction_result)
```
Save / Load:
```python
image_classifier.save(model_path="weights.h5")
```
```python
image_classifier = ImageClassification(model_path="weights.h5")
```
For a more in-depth tutorial about Omnis, you can check out:

%package -n python3-Omnis
Summary:	Deep Learning for everyone
Provides:	python-Omnis
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-Omnis
## Getting started: Implement a deep learning application with 4 lines of code!
The core data structure of Omnis is Application which is designed to be easy to use in each field.
Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
```python
from omnis.application.image_processing.image_classification.image_classification import ImageClassification
```
Choose an application:
```python
image_classifier = ImageClassification()
```
Train:
```python
image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
```
Now you can use the application to classify images:
```python
prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
print(prediction_result)
```
Save / Load:
```python
image_classifier.save(model_path="weights.h5")
```
```python
image_classifier = ImageClassification(model_path="weights.h5")
```
For a more in-depth tutorial about Omnis, you can check out:

%package help
Summary:	Development documents and examples for Omnis
Provides:	python3-Omnis-doc
%description help
## Getting started: Implement a deep learning application with 4 lines of code!
The core data structure of Omnis is Application which is designed to be easy to use in each field.
Here is an `Image Classification` example with the [`Caltech 101`](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) dataset:
```python
from omnis.application.image_processing.image_classification.image_classification import ImageClassification
```
Choose an application:
```python
image_classifier = ImageClassification()
```
Train:
```python
image_classifier.train(data_path='101_ObjectCategories', epochs=5, batch_size=32, model_type='densent121')
```
Now you can use the application to classify images:
```python
prediction_result = image_classifier.predict(data_path = '101_ObjectCategories/accordion')
print(prediction_result)
```
Save / Load:
```python
image_classifier.save(model_path="weights.h5")
```
```python
image_classifier = ImageClassification(model_path="weights.h5")
```
For a more in-depth tutorial about Omnis, you can check out:

%prep
%autosetup -n Omnis-0.0.10.42

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Omnis -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.10.42-1
- Package Spec generated