summaryrefslogtreecommitdiff
path: root/python-onnxconverter-common.spec
blob: 2be71792d15ba9eb9cb60fcf7fccb4c4f872a179 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
%global _empty_manifest_terminate_build 0
Name:		python-onnxconverter-common
Version:	1.13.0
Release:	1
Summary:	ONNX Converter and Optimization Tools
License:	MIT License
URL:		https://github.com/microsoft/onnxconverter-common
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ec/44/54c6b7f1a28d919a15caf642113fb44651087d1bb0658f028c54b93df8e3/onnxconverter-common-1.13.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-onnx
Requires:	python3-packaging
Requires:	python3-protobuf

%description
| Linux | Windows |
|-------|---------|
| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/linux-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=689&branchName=master)| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/common-win32-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=690&branchName=master)|

# Introduction
The onnxconverter-common package provides common functions and utilities for use in converters from various AI frameworks to ONNX. It also enables the different converters to work together to convert a model from mixed frameworks, like a scikit-learn pipeline embedding a xgboost model.

# License
[MIT License](LICENSE)

# Contributing

This project welcomes contributions and suggestions.  Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.




%package -n python3-onnxconverter-common
Summary:	ONNX Converter and Optimization Tools
Provides:	python-onnxconverter-common
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-onnxconverter-common
| Linux | Windows |
|-------|---------|
| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/linux-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=689&branchName=master)| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/common-win32-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=690&branchName=master)|

# Introduction
The onnxconverter-common package provides common functions and utilities for use in converters from various AI frameworks to ONNX. It also enables the different converters to work together to convert a model from mixed frameworks, like a scikit-learn pipeline embedding a xgboost model.

# License
[MIT License](LICENSE)

# Contributing

This project welcomes contributions and suggestions.  Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.




%package help
Summary:	Development documents and examples for onnxconverter-common
Provides:	python3-onnxconverter-common-doc
%description help
| Linux | Windows |
|-------|---------|
| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/linux-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=689&branchName=master)| [![Build Status](https://aiinfra.visualstudio.com/ONNX%20Converters/_apis/build/status/common-win32-conda-CI?branchName=master)](https://aiinfra.visualstudio.com/ONNX%20Converters/_build/latest?definitionId=690&branchName=master)|

# Introduction
The onnxconverter-common package provides common functions and utilities for use in converters from various AI frameworks to ONNX. It also enables the different converters to work together to convert a model from mixed frameworks, like a scikit-learn pipeline embedding a xgboost model.

# License
[MIT License](LICENSE)

# Contributing

This project welcomes contributions and suggestions.  Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.




%prep
%autosetup -n onnxconverter-common-1.13.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-onnxconverter-common -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.13.0-1
- Package Spec generated