summaryrefslogtreecommitdiff
path: root/python-open-spiel.spec
blob: e5a5f5a40fb17c9b6d7ab6869dd4b679ef7aef5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
%global _empty_manifest_terminate_build 0
Name:		python-open-spiel
Version:	1.2
Release:	1
Summary:	A Framework for Reinforcement Learning in Games
License:	Apache 2.0
URL:		https://github.com/deepmind/open_spiel
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/15/fa/b850c0b6c67643e12839deaa65a9775fcdd88eab747e0311e1a13aee0a89/open_spiel-1.2.tar.gz
BuildArch:	noarch

Requires:	python3-pip
Requires:	python3-attrs
Requires:	python3-absl-py
Requires:	python3-numpy
Requires:	python3-scipy

%description

# OpenSpiel: A Framework for Reinforcement Learning in Games

[![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest)
![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg)

OpenSpiel is a collection of environments and algorithms for research in general
reinforcement learning and search/planning in games. OpenSpiel supports n-player
(single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and
sequential, strictly turn-taking and simultaneous-move, perfect and imperfect
information games, as well as traditional multiagent environments such as
(partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel
also includes tools to analyze learning dynamics and other common evaluation
metrics. Games are represented as procedural extensive-form games, with some
natural extensions. The core API and games are implemented in C++ and exposed to
Python. Algorithms and tools are written both in C++ and Python.

To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

<p align="center">
  <img src="docs/_static/OpenSpielB.png" alt="OpenSpiel visual asset">
</p>

# Index

Please choose among the following options:

*   [Installing OpenSpiel](docs/install.md)
*   [Introduction to OpenSpiel](docs/intro.md)
*   [API Overview and First Example](docs/concepts.md)
*   [API Reference](docs/api_reference.md)
*   [Overview of Implemented Games](docs/games.md)
*   [Overview of Implemented Algorithms](docs/algorithms.md)
*   [Developer Guide](docs/developer_guide.md)
*   [Using OpenSpiel as a C++ Library](docs/library.md)
*   [Guidelines and Contributing](docs/contributing.md)
*   [Authors](docs/authors.md)

For a longer introduction to the core concepts, formalisms, and terminology,
including an overview of the algorithms and some results, please see
[OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453).

For an overview of OpenSpiel and example uses of the core API, please check out
our tutorials:

*   [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect
    Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc
    Lanctot.
    [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb)
*   [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc
    poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward
    Lockhart.
    [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb)

If you use OpenSpiel in your research, please cite the paper using the following
BibTeX:

```bibtex
@article{LanctotEtAl2019OpenSpiel,
  title     = {{OpenSpiel}: A Framework for Reinforcement Learning in Games},
  author    = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and
               Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and
               Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and
               Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and
               Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r
               and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding
               and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and
               Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis},
  year      = {2019},
  eprint    = {1908.09453},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  journal   = {CoRR},
  volume    = {abs/1908.09453},
  url       = {http://arxiv.org/abs/1908.09453},
}
```

## Versioning

We use [Semantic Versioning](https://semver.org/).





%package -n python3-open-spiel
Summary:	A Framework for Reinforcement Learning in Games
Provides:	python-open-spiel
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-open-spiel

# OpenSpiel: A Framework for Reinforcement Learning in Games

[![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest)
![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg)

OpenSpiel is a collection of environments and algorithms for research in general
reinforcement learning and search/planning in games. OpenSpiel supports n-player
(single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and
sequential, strictly turn-taking and simultaneous-move, perfect and imperfect
information games, as well as traditional multiagent environments such as
(partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel
also includes tools to analyze learning dynamics and other common evaluation
metrics. Games are represented as procedural extensive-form games, with some
natural extensions. The core API and games are implemented in C++ and exposed to
Python. Algorithms and tools are written both in C++ and Python.

To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

<p align="center">
  <img src="docs/_static/OpenSpielB.png" alt="OpenSpiel visual asset">
</p>

# Index

Please choose among the following options:

*   [Installing OpenSpiel](docs/install.md)
*   [Introduction to OpenSpiel](docs/intro.md)
*   [API Overview and First Example](docs/concepts.md)
*   [API Reference](docs/api_reference.md)
*   [Overview of Implemented Games](docs/games.md)
*   [Overview of Implemented Algorithms](docs/algorithms.md)
*   [Developer Guide](docs/developer_guide.md)
*   [Using OpenSpiel as a C++ Library](docs/library.md)
*   [Guidelines and Contributing](docs/contributing.md)
*   [Authors](docs/authors.md)

For a longer introduction to the core concepts, formalisms, and terminology,
including an overview of the algorithms and some results, please see
[OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453).

For an overview of OpenSpiel and example uses of the core API, please check out
our tutorials:

*   [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect
    Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc
    Lanctot.
    [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb)
*   [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc
    poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward
    Lockhart.
    [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb)

If you use OpenSpiel in your research, please cite the paper using the following
BibTeX:

```bibtex
@article{LanctotEtAl2019OpenSpiel,
  title     = {{OpenSpiel}: A Framework for Reinforcement Learning in Games},
  author    = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and
               Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and
               Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and
               Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and
               Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r
               and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding
               and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and
               Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis},
  year      = {2019},
  eprint    = {1908.09453},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  journal   = {CoRR},
  volume    = {abs/1908.09453},
  url       = {http://arxiv.org/abs/1908.09453},
}
```

## Versioning

We use [Semantic Versioning](https://semver.org/).





%package help
Summary:	Development documents and examples for open-spiel
Provides:	python3-open-spiel-doc
%description help

# OpenSpiel: A Framework for Reinforcement Learning in Games

[![Documentation Status](https://readthedocs.org/projects/openspiel/badge/?version=latest)](https://openspiel.readthedocs.io/en/latest/?badge=latest)
![build_and_test](https://github.com/deepmind/open_spiel/workflows/build_and_test/badge.svg)

OpenSpiel is a collection of environments and algorithms for research in general
reinforcement learning and search/planning in games. OpenSpiel supports n-player
(single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and
sequential, strictly turn-taking and simultaneous-move, perfect and imperfect
information games, as well as traditional multiagent environments such as
(partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel
also includes tools to analyze learning dynamics and other common evaluation
metrics. Games are represented as procedural extensive-form games, with some
natural extensions. The core API and games are implemented in C++ and exposed to
Python. Algorithms and tools are written both in C++ and Python.

To try OpenSpiel in Google Colaboratory, please refer to `open_spiel/colabs` subdirectory or start [here](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/install_open_spiel.ipynb).

<p align="center">
  <img src="docs/_static/OpenSpielB.png" alt="OpenSpiel visual asset">
</p>

# Index

Please choose among the following options:

*   [Installing OpenSpiel](docs/install.md)
*   [Introduction to OpenSpiel](docs/intro.md)
*   [API Overview and First Example](docs/concepts.md)
*   [API Reference](docs/api_reference.md)
*   [Overview of Implemented Games](docs/games.md)
*   [Overview of Implemented Algorithms](docs/algorithms.md)
*   [Developer Guide](docs/developer_guide.md)
*   [Using OpenSpiel as a C++ Library](docs/library.md)
*   [Guidelines and Contributing](docs/contributing.md)
*   [Authors](docs/authors.md)

For a longer introduction to the core concepts, formalisms, and terminology,
including an overview of the algorithms and some results, please see
[OpenSpiel: A Framework for Reinforcement Learning in Games](https://arxiv.org/abs/1908.09453).

For an overview of OpenSpiel and example uses of the core API, please check out
our tutorials:

*   [Motivation, Core API, Brief Intro to Replictor Dynamics and Imperfect
    Information Games](https://www.youtube.com/watch?v=8NCPqtPwlFQ) by Marc
    Lanctot.
    [(slides)](http://mlanctot.info/files/OpenSpiel_Tutorial_KU_Leuven_2022.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb)
*   [Motivation, Core API, Implementing CFR and REINFORCE on Kuhn poker, Leduc
    poker, and Goofspiel](https://www.youtube.com/watch?v=o6JNHoGUXCo) by Edward
    Lockhart.
    [(slides)](http://mlanctot.info/files/open_spiel_tutorial-mar2021-comarl.pdf)
    [(colab)](https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/CFR_and_REINFORCE.ipynb)

If you use OpenSpiel in your research, please cite the paper using the following
BibTeX:

```bibtex
@article{LanctotEtAl2019OpenSpiel,
  title     = {{OpenSpiel}: A Framework for Reinforcement Learning in Games},
  author    = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and
               Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and
               Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and
               Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and
               Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r
               and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding
               and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and
               Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis},
  year      = {2019},
  eprint    = {1908.09453},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  journal   = {CoRR},
  volume    = {abs/1908.09453},
  url       = {http://arxiv.org/abs/1908.09453},
}
```

## Versioning

We use [Semantic Versioning](https://semver.org/).





%prep
%autosetup -n open-spiel-1.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-open-spiel -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2-1
- Package Spec generated