summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-12 03:58:36 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-12 03:58:36 +0000
commit900e51c47fbe0176320a12d4c3e6546453459436 (patch)
tree9edca5f30c772f8c6fafbefc4766d15bae5303f1
parentf8674ed2320f58b373976018c4a2d897515d8f96 (diff)
automatic import of python-opennmt-tf
-rw-r--r--.gitignore1
-rw-r--r--python-opennmt-tf.spec305
-rw-r--r--sources1
3 files changed, 307 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..f4d3527 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/OpenNMT-tf-2.31.0.tar.gz
diff --git a/python-opennmt-tf.spec b/python-opennmt-tf.spec
new file mode 100644
index 0000000..c46f1b4
--- /dev/null
+++ b/python-opennmt-tf.spec
@@ -0,0 +1,305 @@
+%global _empty_manifest_terminate_build 0
+Name: python-OpenNMT-tf
+Version: 2.31.0
+Release: 1
+Summary: Neural machine translation and sequence learning using TensorFlow
+License: MIT
+URL: https://opennmt.net
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5d/8d/4b12ae213b41eb63e19b1d0a7f4e71287dc0ff5b3e13ef8b098fbd8ab169/OpenNMT-tf-2.31.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-ctranslate2
+Requires: python3-packaging
+Requires: python3-pyonmttok
+Requires: python3-pyyaml
+Requires: python3-rouge
+Requires: python3-sacrebleu
+Requires: python3-tensorflow-addons
+Requires: python3-myst-parser
+Requires: python3-sphinx-rtd-theme
+Requires: python3-sphinx
+Requires: python3-tensorflow
+Requires: python3-tensorflow-text
+Requires: python3-black
+Requires: python3-flake8
+Requires: python3-isort
+Requires: python3-parameterized
+Requires: python3-pytest-cov
+
+%description
+OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
+* automatic evaluation during the training
+* multiple decoding strategy: greedy search, beam search, random sampling
+* N-best rescoring
+* gradient accumulation
+* scheduled sampling
+* checkpoint averaging
+* ... and more!
+*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
+## Usage
+OpenNMT-tf requires:
+* Python 3.7 or above
+* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
+We recommend installing it with `pip`:
+```bash
+pip install --upgrade pip
+pip install OpenNMT-tf
+```
+*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
+### Command line
+OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
+For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
+* the **model** type
+* the **parameters** described in a YAML file
+* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
+that are passed to the main script:
+```
+onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
+```
+*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
+### Library
+OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
+For example, the `Runner` class can be used to train and evaluate models with few lines of code:
+```python
+import opennmt
+config = {
+ "model_dir": "/data/wmt-ende/checkpoints/",
+ "data": {
+ "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "train_features_file": "/data/wmt-ende/train.en",
+ "train_labels_file": "/data/wmt-ende/train.de",
+ "eval_features_file": "/data/wmt-ende/valid.en",
+ "eval_labels_file": "/data/wmt-ende/valid.de",
+ }
+}
+model = opennmt.models.TransformerBase()
+runner = opennmt.Runner(model, config, auto_config=True)
+runner.train(num_devices=2, with_eval=True)
+```
+Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
+```python
+decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
+initial_state = decoder.initial_state(
+ memory=memory, memory_sequence_length=memory_sequence_length
+)
+batch_size = tf.shape(memory)[0]
+start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
+decoding_result = decoder.dynamic_decode(
+ target_embedding,
+ start_ids=start_ids,
+ initial_state=initial_state,
+ decoding_strategy=opennmt.utils.BeamSearch(4),
+)
+```
+More examples using OpenNMT-tf as a library can be found online:
+* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
+* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
+*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
+## Additional resources
+* [Documentation](https://opennmt.net/OpenNMT-tf)
+* [Forum](https://forum.opennmt.net)
+* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)
+
+%package -n python3-OpenNMT-tf
+Summary: Neural machine translation and sequence learning using TensorFlow
+Provides: python-OpenNMT-tf
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-OpenNMT-tf
+OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
+* automatic evaluation during the training
+* multiple decoding strategy: greedy search, beam search, random sampling
+* N-best rescoring
+* gradient accumulation
+* scheduled sampling
+* checkpoint averaging
+* ... and more!
+*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
+## Usage
+OpenNMT-tf requires:
+* Python 3.7 or above
+* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
+We recommend installing it with `pip`:
+```bash
+pip install --upgrade pip
+pip install OpenNMT-tf
+```
+*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
+### Command line
+OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
+For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
+* the **model** type
+* the **parameters** described in a YAML file
+* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
+that are passed to the main script:
+```
+onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
+```
+*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
+### Library
+OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
+For example, the `Runner` class can be used to train and evaluate models with few lines of code:
+```python
+import opennmt
+config = {
+ "model_dir": "/data/wmt-ende/checkpoints/",
+ "data": {
+ "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "train_features_file": "/data/wmt-ende/train.en",
+ "train_labels_file": "/data/wmt-ende/train.de",
+ "eval_features_file": "/data/wmt-ende/valid.en",
+ "eval_labels_file": "/data/wmt-ende/valid.de",
+ }
+}
+model = opennmt.models.TransformerBase()
+runner = opennmt.Runner(model, config, auto_config=True)
+runner.train(num_devices=2, with_eval=True)
+```
+Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
+```python
+decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
+initial_state = decoder.initial_state(
+ memory=memory, memory_sequence_length=memory_sequence_length
+)
+batch_size = tf.shape(memory)[0]
+start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
+decoding_result = decoder.dynamic_decode(
+ target_embedding,
+ start_ids=start_ids,
+ initial_state=initial_state,
+ decoding_strategy=opennmt.utils.BeamSearch(4),
+)
+```
+More examples using OpenNMT-tf as a library can be found online:
+* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
+* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
+*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
+## Additional resources
+* [Documentation](https://opennmt.net/OpenNMT-tf)
+* [Forum](https://forum.opennmt.net)
+* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)
+
+%package help
+Summary: Development documents and examples for OpenNMT-tf
+Provides: python3-OpenNMT-tf-doc
+%description help
+OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
+* automatic evaluation during the training
+* multiple decoding strategy: greedy search, beam search, random sampling
+* N-best rescoring
+* gradient accumulation
+* scheduled sampling
+* checkpoint averaging
+* ... and more!
+*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
+## Usage
+OpenNMT-tf requires:
+* Python 3.7 or above
+* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
+We recommend installing it with `pip`:
+```bash
+pip install --upgrade pip
+pip install OpenNMT-tf
+```
+*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
+### Command line
+OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
+For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
+* the **model** type
+* the **parameters** described in a YAML file
+* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
+that are passed to the main script:
+```
+onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
+```
+*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
+### Library
+OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
+For example, the `Runner` class can be used to train and evaluate models with few lines of code:
+```python
+import opennmt
+config = {
+ "model_dir": "/data/wmt-ende/checkpoints/",
+ "data": {
+ "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
+ "train_features_file": "/data/wmt-ende/train.en",
+ "train_labels_file": "/data/wmt-ende/train.de",
+ "eval_features_file": "/data/wmt-ende/valid.en",
+ "eval_labels_file": "/data/wmt-ende/valid.de",
+ }
+}
+model = opennmt.models.TransformerBase()
+runner = opennmt.Runner(model, config, auto_config=True)
+runner.train(num_devices=2, with_eval=True)
+```
+Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
+```python
+decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
+initial_state = decoder.initial_state(
+ memory=memory, memory_sequence_length=memory_sequence_length
+)
+batch_size = tf.shape(memory)[0]
+start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
+decoding_result = decoder.dynamic_decode(
+ target_embedding,
+ start_ids=start_ids,
+ initial_state=initial_state,
+ decoding_strategy=opennmt.utils.BeamSearch(4),
+)
+```
+More examples using OpenNMT-tf as a library can be found online:
+* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
+* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
+*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
+## Additional resources
+* [Documentation](https://opennmt.net/OpenNMT-tf)
+* [Forum](https://forum.opennmt.net)
+* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)
+
+%prep
+%autosetup -n OpenNMT-tf-2.31.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-OpenNMT-tf -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 2.31.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..22251ee
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+bd979a3289f0f311a220a385ccf531fa OpenNMT-tf-2.31.0.tar.gz