summaryrefslogtreecommitdiff
path: root/python-opennmt-tf.spec
blob: a539407f7c75ba3e70a4b47ad770366394639d75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%global _empty_manifest_terminate_build 0
Name:		python-OpenNMT-tf
Version:	2.31.0
Release:	1
Summary:	Neural machine translation and sequence learning using TensorFlow
License:	MIT
URL:		https://opennmt.net
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/5d/8d/4b12ae213b41eb63e19b1d0a7f4e71287dc0ff5b3e13ef8b098fbd8ab169/OpenNMT-tf-2.31.0.tar.gz
BuildArch:	noarch

Requires:	python3-ctranslate2
Requires:	python3-packaging
Requires:	python3-pyonmttok
Requires:	python3-pyyaml
Requires:	python3-rouge
Requires:	python3-sacrebleu
Requires:	python3-tensorflow-addons
Requires:	python3-myst-parser
Requires:	python3-sphinx-rtd-theme
Requires:	python3-sphinx
Requires:	python3-tensorflow
Requires:	python3-tensorflow-text
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-isort
Requires:	python3-parameterized
Requires:	python3-pytest-cov

%description
OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
* automatic evaluation during the training
* multiple decoding strategy: greedy search, beam search, random sampling
* N-best rescoring
* gradient accumulation
* scheduled sampling
* checkpoint averaging
* ... and more!
*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
## Usage
OpenNMT-tf requires:
* Python 3.7 or above
* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
We recommend installing it with `pip`:
```bash
pip install --upgrade pip
pip install OpenNMT-tf
```
*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
### Command line
OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
* the **model** type
* the **parameters** described in a YAML file
* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
that are passed to the main script:
```
onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
```
*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
### Library
OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
For example, the `Runner` class can be used to train and evaluate models with few lines of code:
```python
import opennmt
config = {
    "model_dir": "/data/wmt-ende/checkpoints/",
    "data": {
        "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "train_features_file": "/data/wmt-ende/train.en",
        "train_labels_file": "/data/wmt-ende/train.de",
        "eval_features_file": "/data/wmt-ende/valid.en",
        "eval_labels_file": "/data/wmt-ende/valid.de",
    }
}
model = opennmt.models.TransformerBase()
runner = opennmt.Runner(model, config, auto_config=True)
runner.train(num_devices=2, with_eval=True)
```
Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
```python
decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
initial_state = decoder.initial_state(
    memory=memory, memory_sequence_length=memory_sequence_length
)
batch_size = tf.shape(memory)[0]
start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
decoding_result = decoder.dynamic_decode(
    target_embedding,
    start_ids=start_ids,
    initial_state=initial_state,
    decoding_strategy=opennmt.utils.BeamSearch(4),
)
```
More examples using OpenNMT-tf as a library can be found online:
* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
## Additional resources
* [Documentation](https://opennmt.net/OpenNMT-tf)
* [Forum](https://forum.opennmt.net)
* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)

%package -n python3-OpenNMT-tf
Summary:	Neural machine translation and sequence learning using TensorFlow
Provides:	python-OpenNMT-tf
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-OpenNMT-tf
OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
* automatic evaluation during the training
* multiple decoding strategy: greedy search, beam search, random sampling
* N-best rescoring
* gradient accumulation
* scheduled sampling
* checkpoint averaging
* ... and more!
*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
## Usage
OpenNMT-tf requires:
* Python 3.7 or above
* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
We recommend installing it with `pip`:
```bash
pip install --upgrade pip
pip install OpenNMT-tf
```
*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
### Command line
OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
* the **model** type
* the **parameters** described in a YAML file
* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
that are passed to the main script:
```
onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
```
*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
### Library
OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
For example, the `Runner` class can be used to train and evaluate models with few lines of code:
```python
import opennmt
config = {
    "model_dir": "/data/wmt-ende/checkpoints/",
    "data": {
        "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "train_features_file": "/data/wmt-ende/train.en",
        "train_labels_file": "/data/wmt-ende/train.de",
        "eval_features_file": "/data/wmt-ende/valid.en",
        "eval_labels_file": "/data/wmt-ende/valid.de",
    }
}
model = opennmt.models.TransformerBase()
runner = opennmt.Runner(model, config, auto_config=True)
runner.train(num_devices=2, with_eval=True)
```
Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
```python
decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
initial_state = decoder.initial_state(
    memory=memory, memory_sequence_length=memory_sequence_length
)
batch_size = tf.shape(memory)[0]
start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
decoding_result = decoder.dynamic_decode(
    target_embedding,
    start_ids=start_ids,
    initial_state=initial_state,
    decoding_strategy=opennmt.utils.BeamSearch(4),
)
```
More examples using OpenNMT-tf as a library can be found online:
* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
## Additional resources
* [Documentation](https://opennmt.net/OpenNMT-tf)
* [Forum](https://forum.opennmt.net)
* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)

%package help
Summary:	Development documents and examples for OpenNMT-tf
Provides:	python3-OpenNMT-tf-doc
%description help
OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as:
* automatic evaluation during the training
* multiple decoding strategy: greedy search, beam search, random sampling
* N-best rescoring
* gradient accumulation
* scheduled sampling
* checkpoint averaging
* ... and more!
*See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.*
## Usage
OpenNMT-tf requires:
* Python 3.7 or above
* TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11
We recommend installing it with `pip`:
```bash
pip install --upgrade pip
pip install OpenNMT-tf
```
*See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.*
### Command line
OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models.
For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements:
* the **model** type
* the **parameters** described in a YAML file
* the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab`
that are passed to the main script:
```
onmt-main --model_type <model> --config <config_file.yml> --auto_config <run_type> <run_options>
```
*For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).*
### Library
OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations.
For example, the `Runner` class can be used to train and evaluate models with few lines of code:
```python
import opennmt
config = {
    "model_dir": "/data/wmt-ende/checkpoints/",
    "data": {
        "source_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "target_vocabulary": "/data/wmt-ende/joint-vocab.txt",
        "train_features_file": "/data/wmt-ende/train.en",
        "train_labels_file": "/data/wmt-ende/train.de",
        "eval_features_file": "/data/wmt-ende/valid.en",
        "eval_labels_file": "/data/wmt-ende/valid.de",
    }
}
model = opennmt.models.TransformerBase()
runner = opennmt.Runner(model, config, auto_config=True)
runner.train(num_devices=2, with_eval=True)
```
Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder:
```python
decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000)
initial_state = decoder.initial_state(
    memory=memory, memory_sequence_length=memory_sequence_length
)
batch_size = tf.shape(memory)[0]
start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID)
decoding_result = decoder.dynamic_decode(
    target_embedding,
    start_ids=start_ids,
    initial_state=initial_state,
    decoding_strategy=opennmt.utils.BeamSearch(4),
)
```
More examples using OpenNMT-tf as a library can be found online:
* The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library
* [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving
*For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).*
## Additional resources
* [Documentation](https://opennmt.net/OpenNMT-tf)
* [Forum](https://forum.opennmt.net)
* [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf)

%prep
%autosetup -n OpenNMT-tf-2.31.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-OpenNMT-tf -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 2.31.0-1
- Package Spec generated