summaryrefslogtreecommitdiff
path: root/python-optuna.spec
blob: 25f22f0f514c8ea7e1edfb2b0cd3420273a934c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
%global _empty_manifest_terminate_build 0
Name:		python-optuna
Version:	3.1.1
Release:	1
Summary:	A hyperparameter optimization framework
License:	MIT License
URL:		https://optuna.org/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/bc/7a/71669cf69272c09f3a918a9e0367f4d9c4455348448dc268d5fdd0a2d319/optuna-3.1.1.tar.gz
BuildArch:	noarch

Requires:	python3-alembic
Requires:	python3-cmaes
Requires:	python3-colorlog
Requires:	python3-numpy
Requires:	python3-packaging
Requires:	python3-sqlalchemy
Requires:	python3-tqdm
Requires:	python3-PyYAML
Requires:	python3-asv
Requires:	python3-botorch
Requires:	python3-cma
Requires:	python3-scikit-optimize
Requires:	python3-virtualenv
Requires:	python3-black
Requires:	python3-blackdoc
Requires:	python3-hacking
Requires:	python3-isort
Requires:	python3-mypy
Requires:	python3-types-PyYAML
Requires:	python3-types-redis
Requires:	python3-types-setuptools
Requires:	python3-typing-extensions
Requires:	python3-cma
Requires:	python3-distributed
Requires:	python3-fvcore
Requires:	python3-lightgbm
Requires:	python3-matplotlib
Requires:	python3-mlflow
Requires:	python3-pandas
Requires:	python3-pillow
Requires:	python3-plotly
Requires:	python3-scikit-learn
Requires:	python3-scikit-optimize
Requires:	python3-sphinx
Requires:	python3-sphinx-copybutton
Requires:	python3-sphinx-gallery
Requires:	python3-sphinx-plotly-directive
Requires:	python3-sphinx-rtd-theme
Requires:	python3-torch
Requires:	python3-torchaudio
Requires:	python3-torchvision
Requires:	python3-chainer
Requires:	python3-cma
Requires:	python3-distributed
Requires:	python3-mpi4py
Requires:	python3-pandas
Requires:	python3-scikit-learn
Requires:	python3-wandb
Requires:	python3-xgboost
Requires:	python3-allennlp
Requires:	python3-cached-path
Requires:	python3-botorch
Requires:	python3-catalyst
Requires:	python3-catboost
Requires:	python3-fastai
Requires:	python3-lightgbm
Requires:	python3-mlflow
Requires:	python3-mxnet
Requires:	python3-pytorch-ignite
Requires:	python3-pytorch-lightning
Requires:	python3-scikit-optimize
Requires:	python3-shap
Requires:	python3-skorch
Requires:	python3-tensorflow
Requires:	python3-tensorflow-datasets
Requires:	python3-torch
Requires:	python3-torchaudio
Requires:	python3-torchvision
Requires:	python3-matplotlib
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-redis
Requires:	python3-scikit-learn
Requires:	python3-codecov
Requires:	python3-fakeredis[lua]
Requires:	python3-kaleido
Requires:	python3-pytest
Requires:	python3-scipy

%description
<div align="center"><img src="https://raw.githubusercontent.com/optuna/optuna/master/docs/image/optuna-logo.png" width="800"/></div>

# Optuna: A hyperparameter optimization framework

[![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna)
[![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna)
[![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/)
[![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master)

[**Website**](https://optuna.org/)
| [**Docs**](https://optuna.readthedocs.io/en/stable/)
| [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html)
| [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html)
| [**Examples**](https://github.com/optuna/optuna-examples)

*Optuna* is an automatic hyperparameter optimization software framework, particularly designed
for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our
*define-by-run* API, the code written with Optuna enjoys high modularity, and the user of
Optuna can dynamically construct the search spaces for the hyperparameters.

## Key Features

Optuna has modern functionalities as follows:

- [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html)
  - Handle a wide variety of tasks with a simple installation that has few requirements.
- [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html)
  - Define search spaces using familiar Python syntax including conditionals and loops.
- [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html)
  - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.
- [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html)
  - Scale studies to tens or hundreds or workers with little or no changes to the code.
- [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html)
  - Inspect optimization histories from a variety of plotting functions.


## Basic Concepts

We use the terms *study* and *trial* as follows:

- Study: optimization based on an objective function
- Trial: a single execution of the objective function

Please refer to sample code below. The goal of a *study* is to find out the optimal set of
hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g.,
`n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the
optimization *studies*.

[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb)

```python
import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.
```

## Examples

Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples).

## Integrations

[Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

* [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp)
* [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py)
* [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py)
* [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)
* FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py))
* [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py)
* [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py)
* [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py)
* [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py)
* [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py)
* [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py)
* [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py)
* [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)
* [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)


## Web Dashboard

[Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna.
You can check the optimization history, hyperparameter importances, etc. in graphs and tables.
You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions.
Feature requests and bug reports welcome!

![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif)

Install `optuna-dashboard` via pip:

```
$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.
```

## Installation

Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna).

```bash
# PyPI
$ pip install optuna
```

```bash
# Anaconda Cloud
$ conda install -c conda-forge optuna
```

Optuna supports Python 3.7 or newer.

Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna).

## Communication

- [GitHub Discussions] for questions.
- [GitHub Issues] for bug reports and feature requests.

[GitHub Discussions]: https://github.com/optuna/optuna/discussions
[GitHub issues]: https://github.com/optuna/optuna/issues


## Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome).

For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).


## Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)).




%package -n python3-optuna
Summary:	A hyperparameter optimization framework
Provides:	python-optuna
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-optuna
<div align="center"><img src="https://raw.githubusercontent.com/optuna/optuna/master/docs/image/optuna-logo.png" width="800"/></div>

# Optuna: A hyperparameter optimization framework

[![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna)
[![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna)
[![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/)
[![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master)

[**Website**](https://optuna.org/)
| [**Docs**](https://optuna.readthedocs.io/en/stable/)
| [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html)
| [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html)
| [**Examples**](https://github.com/optuna/optuna-examples)

*Optuna* is an automatic hyperparameter optimization software framework, particularly designed
for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our
*define-by-run* API, the code written with Optuna enjoys high modularity, and the user of
Optuna can dynamically construct the search spaces for the hyperparameters.

## Key Features

Optuna has modern functionalities as follows:

- [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html)
  - Handle a wide variety of tasks with a simple installation that has few requirements.
- [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html)
  - Define search spaces using familiar Python syntax including conditionals and loops.
- [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html)
  - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.
- [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html)
  - Scale studies to tens or hundreds or workers with little or no changes to the code.
- [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html)
  - Inspect optimization histories from a variety of plotting functions.


## Basic Concepts

We use the terms *study* and *trial* as follows:

- Study: optimization based on an objective function
- Trial: a single execution of the objective function

Please refer to sample code below. The goal of a *study* is to find out the optimal set of
hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g.,
`n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the
optimization *studies*.

[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb)

```python
import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.
```

## Examples

Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples).

## Integrations

[Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

* [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp)
* [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py)
* [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py)
* [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)
* FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py))
* [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py)
* [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py)
* [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py)
* [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py)
* [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py)
* [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py)
* [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py)
* [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)
* [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)


## Web Dashboard

[Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna.
You can check the optimization history, hyperparameter importances, etc. in graphs and tables.
You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions.
Feature requests and bug reports welcome!

![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif)

Install `optuna-dashboard` via pip:

```
$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.
```

## Installation

Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna).

```bash
# PyPI
$ pip install optuna
```

```bash
# Anaconda Cloud
$ conda install -c conda-forge optuna
```

Optuna supports Python 3.7 or newer.

Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna).

## Communication

- [GitHub Discussions] for questions.
- [GitHub Issues] for bug reports and feature requests.

[GitHub Discussions]: https://github.com/optuna/optuna/discussions
[GitHub issues]: https://github.com/optuna/optuna/issues


## Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome).

For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).


## Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)).




%package help
Summary:	Development documents and examples for optuna
Provides:	python3-optuna-doc
%description help
<div align="center"><img src="https://raw.githubusercontent.com/optuna/optuna/master/docs/image/optuna-logo.png" width="800"/></div>

# Optuna: A hyperparameter optimization framework

[![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna)
[![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna)
[![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/)
[![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master)

[**Website**](https://optuna.org/)
| [**Docs**](https://optuna.readthedocs.io/en/stable/)
| [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html)
| [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html)
| [**Examples**](https://github.com/optuna/optuna-examples)

*Optuna* is an automatic hyperparameter optimization software framework, particularly designed
for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our
*define-by-run* API, the code written with Optuna enjoys high modularity, and the user of
Optuna can dynamically construct the search spaces for the hyperparameters.

## Key Features

Optuna has modern functionalities as follows:

- [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html)
  - Handle a wide variety of tasks with a simple installation that has few requirements.
- [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html)
  - Define search spaces using familiar Python syntax including conditionals and loops.
- [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html)
  - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.
- [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html)
  - Scale studies to tens or hundreds or workers with little or no changes to the code.
- [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html)
  - Inspect optimization histories from a variety of plotting functions.


## Basic Concepts

We use the terms *study* and *trial* as follows:

- Study: optimization based on an objective function
- Trial: a single execution of the objective function

Please refer to sample code below. The goal of a *study* is to find out the optimal set of
hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g.,
`n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the
optimization *studies*.

[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb)

```python
import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.
```

## Examples

Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples).

## Integrations

[Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

* [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp)
* [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py)
* [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py)
* [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py)
* FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py))
* [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py)
* [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py)
* [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py)
* [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py)
* [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py)
* [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py)
* [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py)
* [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py)
* [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)


## Web Dashboard

[Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna.
You can check the optimization history, hyperparameter importances, etc. in graphs and tables.
You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions.
Feature requests and bug reports welcome!

![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif)

Install `optuna-dashboard` via pip:

```
$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.
```

## Installation

Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna).

```bash
# PyPI
$ pip install optuna
```

```bash
# Anaconda Cloud
$ conda install -c conda-forge optuna
```

Optuna supports Python 3.7 or newer.

Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna).

## Communication

- [GitHub Discussions] for questions.
- [GitHub Issues] for bug reports and feature requests.

[GitHub Discussions]: https://github.com/optuna/optuna/discussions
[GitHub issues]: https://github.com/optuna/optuna/issues


## Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome).

For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md).


## Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)).




%prep
%autosetup -n optuna-3.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-optuna -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.1.1-1
- Package Spec generated