summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-orbit-ml.spec483
-rw-r--r--sources1
3 files changed, 485 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..ef8cd42 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/orbit-ml-1.1.4.2.tar.gz
diff --git a/python-orbit-ml.spec b/python-orbit-ml.spec
new file mode 100644
index 0000000..abe1a48
--- /dev/null
+++ b/python-orbit-ml.spec
@@ -0,0 +1,483 @@
+%global _empty_manifest_terminate_build 0
+Name: python-orbit-ml
+Version: 1.1.4.2
+Release: 1
+Summary: Orbit is a package for Bayesian time series modeling and inference.
+License: Apache License 2.0
+URL: https://orbit-ml.readthedocs.io/en/stable/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/14/60/7ca25baa64042fa2ca90df4f4769d05f89dd9120b5497d34c1e5ae329d72/orbit-ml-1.1.4.2.tar.gz
+BuildArch: noarch
+
+
+%description
+<!--- BADGES: START --->
+![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/uber/orbit)
+[![PyPI](https://img.shields.io/pypi/v/orbit-ml)][#pypi-package]
+[![Build Status](https://github.com/uber/orbit/workflows/build/badge.svg?branch=dev)](https://github.com/uber/orbit/actions)
+[![Documentation Status](https://readthedocs.org/projects/orbit-ml/badge/?version=latest)](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/orbit-ml)][#pypi-package]
+[![Downloads](https://pepy.tech/badge/orbit-ml)](https://pepy.tech/project/orbit-ml)
+[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=orbit-ml)][#conda-forge-feedstock]
+[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/orbit-ml?logo=anaconda&style=flat)][#conda-forge-package]
+[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/orbit-ml?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
+[![PyPI - License](https://img.shields.io/pypi/l/orbit-ml?logo=pypi&style=flat&color=green)][#github-license]
+[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
+[#pypi-package]: https://pypi.org/project/orbit-ml/
+[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
+[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
+<!--- BADGES: END --->
+# User Notice
+The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
+# Disclaimer
+This project
+- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
+- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
+# Orbit: A Python Package for Bayesian Forecasting
+Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
+familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
+For details, check out our documentation and tutorials:
+- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
+- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
+Currently, it supports concrete implementations for the following models:
+- Exponential Smoothing (ETS)
+- Local Global Trend (LGT)
+- Damped Local Trend (DLT)
+- Kernel Time-based Regression (KTR)
+It also supports the following sampling/optimization methods for model estimation/inferences:
+- Markov-Chain Monte Carlo (MCMC) as a full sampling method
+- Maximum a Posteriori (MAP) as a point estimate method
+- Variational Inference (VI) as a hybrid-sampling method on approximate
+ distribution
+## Installation
+### Installing Stable Release
+Install the library either from PyPi or from the source with `pip`.
+Alternatively, you can also install it from Anaconda with `conda`:
+**With pip**
+1. Installing from PyPI
+ ```sh
+ $ pip install orbit-ml
+ ```
+2. Install from source
+ ```sh
+ $ git clone https://github.com/uber/orbit.git
+ $ cd orbit
+ $ pip install -r requirements.txt
+ $ pip install .
+ ```
+**With conda**
+The library can be installed from the conda-forge channel using conda.
+```sh
+$ conda install -c conda-forge orbit-ml
+```
+### Installing from Dev Branch
+```sh
+$ pip install git+https://github.com/uber/orbit.git@dev
+```
+## Quick Start with Damped-Local-Trend (DLT) Model
+### FULL Bayesian Prediction
+```python
+from orbit.utils.dataset import load_iclaims
+from orbit.models import DLT
+from orbit.diagnostics.plot import plot_predicted_data
+# log-transformed data
+df = load_iclaims()
+# train-test split
+test_size = 52
+train_df = df[:-test_size]
+test_df = df[-test_size:]
+dlt = DLT(
+ response_col='claims', date_col='week',
+ regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
+ seasonality=52,
+)
+dlt.fit(df=train_df)
+# outcomes data frame
+predicted_df = dlt.predict(df=test_df)
+plot_predicted_data(
+ training_actual_df=train_df, predicted_df=predicted_df,
+ date_col=dlt.date_col, actual_col=dlt.response_col,
+ test_actual_df=test_df
+)
+```
+![full-pred](docs/img/dlt-mcmc-pred.png)
+## Demo
+Nowcasting with Regression in DLT:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
+Backtest on M3 Data:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
+More examples can be found under [tutorials](./docs/tutorials)
+and [examples](./examples).
+# Contributing
+We welcome community contributors to the project. Before you start, please read our
+[code of conduct](CODE_OF_CONDUCT.md) and check out
+[contributing guidelines](CONTRIBUTING.md) first.
+# Versioning
+We document versions and changes in our [changelog](./docs/changelog.rst).
+# References
+## Presentations
+Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
+## Citation
+To cite Orbit in publications, refer to the following whitepaper:
+[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
+Bibtex:
+```
+@misc{
+ ng2020orbit,
+ title={Orbit: Probabilistic Forecast with Exponential Smoothing},
+ author={Edwin Ng,
+ Zhishi Wang,
+ Huigang Chen,
+ Steve Yang,
+ Slawek Smyl},
+ year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
+}
+```
+## Papers
+- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
+ P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
+ Research, 20(1):973–978, 2019.
+- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
+ J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
+- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
+ the state space approach. Springer Science & Business Media, 2008.
+- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
+ International Symposium on Forecasting, 2015.
+## Related projects
+- [Pyro](https://github.com/pyro-ppl/pyro)
+- [Stan](https://github.com/stan-dev/stan)
+- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
+- [forecast](https://github.com/robjhyndman/forecast)
+- [prophet](https://facebook.github.io/prophet/)
+
+%package -n python3-orbit-ml
+Summary: Orbit is a package for Bayesian time series modeling and inference.
+Provides: python-orbit-ml
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-orbit-ml
+<!--- BADGES: START --->
+![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/uber/orbit)
+[![PyPI](https://img.shields.io/pypi/v/orbit-ml)][#pypi-package]
+[![Build Status](https://github.com/uber/orbit/workflows/build/badge.svg?branch=dev)](https://github.com/uber/orbit/actions)
+[![Documentation Status](https://readthedocs.org/projects/orbit-ml/badge/?version=latest)](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/orbit-ml)][#pypi-package]
+[![Downloads](https://pepy.tech/badge/orbit-ml)](https://pepy.tech/project/orbit-ml)
+[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=orbit-ml)][#conda-forge-feedstock]
+[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/orbit-ml?logo=anaconda&style=flat)][#conda-forge-package]
+[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/orbit-ml?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
+[![PyPI - License](https://img.shields.io/pypi/l/orbit-ml?logo=pypi&style=flat&color=green)][#github-license]
+[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
+[#pypi-package]: https://pypi.org/project/orbit-ml/
+[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
+[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
+<!--- BADGES: END --->
+# User Notice
+The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
+# Disclaimer
+This project
+- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
+- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
+# Orbit: A Python Package for Bayesian Forecasting
+Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
+familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
+For details, check out our documentation and tutorials:
+- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
+- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
+Currently, it supports concrete implementations for the following models:
+- Exponential Smoothing (ETS)
+- Local Global Trend (LGT)
+- Damped Local Trend (DLT)
+- Kernel Time-based Regression (KTR)
+It also supports the following sampling/optimization methods for model estimation/inferences:
+- Markov-Chain Monte Carlo (MCMC) as a full sampling method
+- Maximum a Posteriori (MAP) as a point estimate method
+- Variational Inference (VI) as a hybrid-sampling method on approximate
+ distribution
+## Installation
+### Installing Stable Release
+Install the library either from PyPi or from the source with `pip`.
+Alternatively, you can also install it from Anaconda with `conda`:
+**With pip**
+1. Installing from PyPI
+ ```sh
+ $ pip install orbit-ml
+ ```
+2. Install from source
+ ```sh
+ $ git clone https://github.com/uber/orbit.git
+ $ cd orbit
+ $ pip install -r requirements.txt
+ $ pip install .
+ ```
+**With conda**
+The library can be installed from the conda-forge channel using conda.
+```sh
+$ conda install -c conda-forge orbit-ml
+```
+### Installing from Dev Branch
+```sh
+$ pip install git+https://github.com/uber/orbit.git@dev
+```
+## Quick Start with Damped-Local-Trend (DLT) Model
+### FULL Bayesian Prediction
+```python
+from orbit.utils.dataset import load_iclaims
+from orbit.models import DLT
+from orbit.diagnostics.plot import plot_predicted_data
+# log-transformed data
+df = load_iclaims()
+# train-test split
+test_size = 52
+train_df = df[:-test_size]
+test_df = df[-test_size:]
+dlt = DLT(
+ response_col='claims', date_col='week',
+ regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
+ seasonality=52,
+)
+dlt.fit(df=train_df)
+# outcomes data frame
+predicted_df = dlt.predict(df=test_df)
+plot_predicted_data(
+ training_actual_df=train_df, predicted_df=predicted_df,
+ date_col=dlt.date_col, actual_col=dlt.response_col,
+ test_actual_df=test_df
+)
+```
+![full-pred](docs/img/dlt-mcmc-pred.png)
+## Demo
+Nowcasting with Regression in DLT:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
+Backtest on M3 Data:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
+More examples can be found under [tutorials](./docs/tutorials)
+and [examples](./examples).
+# Contributing
+We welcome community contributors to the project. Before you start, please read our
+[code of conduct](CODE_OF_CONDUCT.md) and check out
+[contributing guidelines](CONTRIBUTING.md) first.
+# Versioning
+We document versions and changes in our [changelog](./docs/changelog.rst).
+# References
+## Presentations
+Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
+## Citation
+To cite Orbit in publications, refer to the following whitepaper:
+[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
+Bibtex:
+```
+@misc{
+ ng2020orbit,
+ title={Orbit: Probabilistic Forecast with Exponential Smoothing},
+ author={Edwin Ng,
+ Zhishi Wang,
+ Huigang Chen,
+ Steve Yang,
+ Slawek Smyl},
+ year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
+}
+```
+## Papers
+- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
+ P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
+ Research, 20(1):973–978, 2019.
+- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
+ J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
+- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
+ the state space approach. Springer Science & Business Media, 2008.
+- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
+ International Symposium on Forecasting, 2015.
+## Related projects
+- [Pyro](https://github.com/pyro-ppl/pyro)
+- [Stan](https://github.com/stan-dev/stan)
+- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
+- [forecast](https://github.com/robjhyndman/forecast)
+- [prophet](https://facebook.github.io/prophet/)
+
+%package help
+Summary: Development documents and examples for orbit-ml
+Provides: python3-orbit-ml-doc
+%description help
+<!--- BADGES: START --->
+![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/uber/orbit)
+[![PyPI](https://img.shields.io/pypi/v/orbit-ml)][#pypi-package]
+[![Build Status](https://github.com/uber/orbit/workflows/build/badge.svg?branch=dev)](https://github.com/uber/orbit/actions)
+[![Documentation Status](https://readthedocs.org/projects/orbit-ml/badge/?version=latest)](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
+[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/orbit-ml)][#pypi-package]
+[![Downloads](https://pepy.tech/badge/orbit-ml)](https://pepy.tech/project/orbit-ml)
+[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=orbit-ml)][#conda-forge-feedstock]
+[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/orbit-ml?logo=anaconda&style=flat)][#conda-forge-package]
+[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/orbit-ml?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
+[![PyPI - License](https://img.shields.io/pypi/l/orbit-ml?logo=pypi&style=flat&color=green)][#github-license]
+[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
+[#pypi-package]: https://pypi.org/project/orbit-ml/
+[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
+[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
+<!--- BADGES: END --->
+# User Notice
+The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
+# Disclaimer
+This project
+- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
+- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
+# Orbit: A Python Package for Bayesian Forecasting
+Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
+familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
+For details, check out our documentation and tutorials:
+- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
+- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
+Currently, it supports concrete implementations for the following models:
+- Exponential Smoothing (ETS)
+- Local Global Trend (LGT)
+- Damped Local Trend (DLT)
+- Kernel Time-based Regression (KTR)
+It also supports the following sampling/optimization methods for model estimation/inferences:
+- Markov-Chain Monte Carlo (MCMC) as a full sampling method
+- Maximum a Posteriori (MAP) as a point estimate method
+- Variational Inference (VI) as a hybrid-sampling method on approximate
+ distribution
+## Installation
+### Installing Stable Release
+Install the library either from PyPi or from the source with `pip`.
+Alternatively, you can also install it from Anaconda with `conda`:
+**With pip**
+1. Installing from PyPI
+ ```sh
+ $ pip install orbit-ml
+ ```
+2. Install from source
+ ```sh
+ $ git clone https://github.com/uber/orbit.git
+ $ cd orbit
+ $ pip install -r requirements.txt
+ $ pip install .
+ ```
+**With conda**
+The library can be installed from the conda-forge channel using conda.
+```sh
+$ conda install -c conda-forge orbit-ml
+```
+### Installing from Dev Branch
+```sh
+$ pip install git+https://github.com/uber/orbit.git@dev
+```
+## Quick Start with Damped-Local-Trend (DLT) Model
+### FULL Bayesian Prediction
+```python
+from orbit.utils.dataset import load_iclaims
+from orbit.models import DLT
+from orbit.diagnostics.plot import plot_predicted_data
+# log-transformed data
+df = load_iclaims()
+# train-test split
+test_size = 52
+train_df = df[:-test_size]
+test_df = df[-test_size:]
+dlt = DLT(
+ response_col='claims', date_col='week',
+ regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
+ seasonality=52,
+)
+dlt.fit(df=train_df)
+# outcomes data frame
+predicted_df = dlt.predict(df=test_df)
+plot_predicted_data(
+ training_actual_df=train_df, predicted_df=predicted_df,
+ date_col=dlt.date_col, actual_col=dlt.response_col,
+ test_actual_df=test_df
+)
+```
+![full-pred](docs/img/dlt-mcmc-pred.png)
+## Demo
+Nowcasting with Regression in DLT:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
+Backtest on M3 Data:
+[![Open All Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
+More examples can be found under [tutorials](./docs/tutorials)
+and [examples](./examples).
+# Contributing
+We welcome community contributors to the project. Before you start, please read our
+[code of conduct](CODE_OF_CONDUCT.md) and check out
+[contributing guidelines](CONTRIBUTING.md) first.
+# Versioning
+We document versions and changes in our [changelog](./docs/changelog.rst).
+# References
+## Presentations
+Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
+## Citation
+To cite Orbit in publications, refer to the following whitepaper:
+[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
+Bibtex:
+```
+@misc{
+ ng2020orbit,
+ title={Orbit: Probabilistic Forecast with Exponential Smoothing},
+ author={Edwin Ng,
+ Zhishi Wang,
+ Huigang Chen,
+ Steve Yang,
+ Slawek Smyl},
+ year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
+}
+```
+## Papers
+- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
+ P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
+ Research, 20(1):973–978, 2019.
+- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
+ J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
+- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
+ the state space approach. Springer Science & Business Media, 2008.
+- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
+ International Symposium on Forecasting, 2015.
+## Related projects
+- [Pyro](https://github.com/pyro-ppl/pyro)
+- [Stan](https://github.com/stan-dev/stan)
+- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
+- [forecast](https://github.com/robjhyndman/forecast)
+- [prophet](https://facebook.github.io/prophet/)
+
+%prep
+%autosetup -n orbit-ml-1.1.4.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-orbit-ml -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.4.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..4e916b6
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8a49278ba1ffbb6a79468ee72ae4950f orbit-ml-1.1.4.2.tar.gz