1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
%global _empty_manifest_terminate_build 0
Name: python-orbit-ml
Version: 1.1.4.2
Release: 1
Summary: Orbit is a package for Bayesian time series modeling and inference.
License: Apache License 2.0
URL: https://orbit-ml.readthedocs.io/en/stable/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/14/60/7ca25baa64042fa2ca90df4f4769d05f89dd9120b5497d34c1e5ae329d72/orbit-ml-1.1.4.2.tar.gz
BuildArch: noarch
%description
<!--- BADGES: START --->

[][#pypi-package]
[](https://github.com/uber/orbit/actions)
[](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
[][#pypi-package]
[](https://pepy.tech/project/orbit-ml)
[][#conda-forge-feedstock]
[][#conda-forge-package]
[][#conda-forge-package]
[][#github-license]
[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/orbit-ml/
[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
<!--- BADGES: END --->
# User Notice
The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
# Disclaimer
This project
- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
# Orbit: A Python Package for Bayesian Forecasting
Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
For details, check out our documentation and tutorials:
- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
Currently, it supports concrete implementations for the following models:
- Exponential Smoothing (ETS)
- Local Global Trend (LGT)
- Damped Local Trend (DLT)
- Kernel Time-based Regression (KTR)
It also supports the following sampling/optimization methods for model estimation/inferences:
- Markov-Chain Monte Carlo (MCMC) as a full sampling method
- Maximum a Posteriori (MAP) as a point estimate method
- Variational Inference (VI) as a hybrid-sampling method on approximate
distribution
## Installation
### Installing Stable Release
Install the library either from PyPi or from the source with `pip`.
Alternatively, you can also install it from Anaconda with `conda`:
**With pip**
1. Installing from PyPI
```sh
$ pip install orbit-ml
```
2. Install from source
```sh
$ git clone https://github.com/uber/orbit.git
$ cd orbit
$ pip install -r requirements.txt
$ pip install .
```
**With conda**
The library can be installed from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge orbit-ml
```
### Installing from Dev Branch
```sh
$ pip install git+https://github.com/uber/orbit.git@dev
```
## Quick Start with Damped-Local-Trend (DLT) Model
### FULL Bayesian Prediction
```python
from orbit.utils.dataset import load_iclaims
from orbit.models import DLT
from orbit.diagnostics.plot import plot_predicted_data
# log-transformed data
df = load_iclaims()
# train-test split
test_size = 52
train_df = df[:-test_size]
test_df = df[-test_size:]
dlt = DLT(
response_col='claims', date_col='week',
regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
seasonality=52,
)
dlt.fit(df=train_df)
# outcomes data frame
predicted_df = dlt.predict(df=test_df)
plot_predicted_data(
training_actual_df=train_df, predicted_df=predicted_df,
date_col=dlt.date_col, actual_col=dlt.response_col,
test_actual_df=test_df
)
```

## Demo
Nowcasting with Regression in DLT:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
Backtest on M3 Data:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
More examples can be found under [tutorials](./docs/tutorials)
and [examples](./examples).
# Contributing
We welcome community contributors to the project. Before you start, please read our
[code of conduct](CODE_OF_CONDUCT.md) and check out
[contributing guidelines](CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](./docs/changelog.rst).
# References
## Presentations
Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
## Citation
To cite Orbit in publications, refer to the following whitepaper:
[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
Bibtex:
```
@misc{
ng2020orbit,
title={Orbit: Probabilistic Forecast with Exponential Smoothing},
author={Edwin Ng,
Zhishi Wang,
Huigang Chen,
Steve Yang,
Slawek Smyl},
year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
}
```
## Papers
- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.
- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
the state space approach. Springer Science & Business Media, 2008.
- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
International Symposium on Forecasting, 2015.
## Related projects
- [Pyro](https://github.com/pyro-ppl/pyro)
- [Stan](https://github.com/stan-dev/stan)
- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
- [forecast](https://github.com/robjhyndman/forecast)
- [prophet](https://facebook.github.io/prophet/)
%package -n python3-orbit-ml
Summary: Orbit is a package for Bayesian time series modeling and inference.
Provides: python-orbit-ml
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-orbit-ml
<!--- BADGES: START --->

[][#pypi-package]
[](https://github.com/uber/orbit/actions)
[](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
[][#pypi-package]
[](https://pepy.tech/project/orbit-ml)
[][#conda-forge-feedstock]
[][#conda-forge-package]
[][#conda-forge-package]
[][#github-license]
[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/orbit-ml/
[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
<!--- BADGES: END --->
# User Notice
The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
# Disclaimer
This project
- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
# Orbit: A Python Package for Bayesian Forecasting
Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
For details, check out our documentation and tutorials:
- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
Currently, it supports concrete implementations for the following models:
- Exponential Smoothing (ETS)
- Local Global Trend (LGT)
- Damped Local Trend (DLT)
- Kernel Time-based Regression (KTR)
It also supports the following sampling/optimization methods for model estimation/inferences:
- Markov-Chain Monte Carlo (MCMC) as a full sampling method
- Maximum a Posteriori (MAP) as a point estimate method
- Variational Inference (VI) as a hybrid-sampling method on approximate
distribution
## Installation
### Installing Stable Release
Install the library either from PyPi or from the source with `pip`.
Alternatively, you can also install it from Anaconda with `conda`:
**With pip**
1. Installing from PyPI
```sh
$ pip install orbit-ml
```
2. Install from source
```sh
$ git clone https://github.com/uber/orbit.git
$ cd orbit
$ pip install -r requirements.txt
$ pip install .
```
**With conda**
The library can be installed from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge orbit-ml
```
### Installing from Dev Branch
```sh
$ pip install git+https://github.com/uber/orbit.git@dev
```
## Quick Start with Damped-Local-Trend (DLT) Model
### FULL Bayesian Prediction
```python
from orbit.utils.dataset import load_iclaims
from orbit.models import DLT
from orbit.diagnostics.plot import plot_predicted_data
# log-transformed data
df = load_iclaims()
# train-test split
test_size = 52
train_df = df[:-test_size]
test_df = df[-test_size:]
dlt = DLT(
response_col='claims', date_col='week',
regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
seasonality=52,
)
dlt.fit(df=train_df)
# outcomes data frame
predicted_df = dlt.predict(df=test_df)
plot_predicted_data(
training_actual_df=train_df, predicted_df=predicted_df,
date_col=dlt.date_col, actual_col=dlt.response_col,
test_actual_df=test_df
)
```

## Demo
Nowcasting with Regression in DLT:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
Backtest on M3 Data:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
More examples can be found under [tutorials](./docs/tutorials)
and [examples](./examples).
# Contributing
We welcome community contributors to the project. Before you start, please read our
[code of conduct](CODE_OF_CONDUCT.md) and check out
[contributing guidelines](CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](./docs/changelog.rst).
# References
## Presentations
Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
## Citation
To cite Orbit in publications, refer to the following whitepaper:
[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
Bibtex:
```
@misc{
ng2020orbit,
title={Orbit: Probabilistic Forecast with Exponential Smoothing},
author={Edwin Ng,
Zhishi Wang,
Huigang Chen,
Steve Yang,
Slawek Smyl},
year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
}
```
## Papers
- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.
- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
the state space approach. Springer Science & Business Media, 2008.
- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
International Symposium on Forecasting, 2015.
## Related projects
- [Pyro](https://github.com/pyro-ppl/pyro)
- [Stan](https://github.com/stan-dev/stan)
- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
- [forecast](https://github.com/robjhyndman/forecast)
- [prophet](https://facebook.github.io/prophet/)
%package help
Summary: Development documents and examples for orbit-ml
Provides: python3-orbit-ml-doc
%description help
<!--- BADGES: START --->

[][#pypi-package]
[](https://github.com/uber/orbit/actions)
[](https://orbit-ml.readthedocs.io/en/latest/?badge=latest)
[][#pypi-package]
[](https://pepy.tech/project/orbit-ml)
[][#conda-forge-feedstock]
[][#conda-forge-package]
[][#conda-forge-package]
[][#github-license]
[#github-license]: https://github.com/uber/orbit/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/orbit-ml/
[#conda-forge-package]: https://anaconda.org/conda-forge/orbit-ml
[#conda-forge-feedstock]: https://github.com/conda-forge/orbit-ml-feedstock
<!--- BADGES: END --->
# User Notice
The default page of the repo is on `dev` branch. To install the dev version, please check the section `Installing from Dev Branch`. If you are looking for a **stable version**, please refer to the `master` branch [here](https://github.com/uber/orbit/tree/master).
# Disclaimer
This project
- is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
- requires PyStan as a system dependency. PyStan is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.html), which is a free, copyleft license for software.
# Orbit: A Python Package for Bayesian Forecasting
Orbit is a Python package for Bayesian time series forecasting and inference. It provides a
familiar and intuitive initialize-fit-predict interface for time series tasks, while utilizing probabilistic programming languages under the hood.
For details, check out our documentation and tutorials:
- HTML (stable): https://orbit-ml.readthedocs.io/en/stable/
- HTML (latest): https://orbit-ml.readthedocs.io/en/latest/
Currently, it supports concrete implementations for the following models:
- Exponential Smoothing (ETS)
- Local Global Trend (LGT)
- Damped Local Trend (DLT)
- Kernel Time-based Regression (KTR)
It also supports the following sampling/optimization methods for model estimation/inferences:
- Markov-Chain Monte Carlo (MCMC) as a full sampling method
- Maximum a Posteriori (MAP) as a point estimate method
- Variational Inference (VI) as a hybrid-sampling method on approximate
distribution
## Installation
### Installing Stable Release
Install the library either from PyPi or from the source with `pip`.
Alternatively, you can also install it from Anaconda with `conda`:
**With pip**
1. Installing from PyPI
```sh
$ pip install orbit-ml
```
2. Install from source
```sh
$ git clone https://github.com/uber/orbit.git
$ cd orbit
$ pip install -r requirements.txt
$ pip install .
```
**With conda**
The library can be installed from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge orbit-ml
```
### Installing from Dev Branch
```sh
$ pip install git+https://github.com/uber/orbit.git@dev
```
## Quick Start with Damped-Local-Trend (DLT) Model
### FULL Bayesian Prediction
```python
from orbit.utils.dataset import load_iclaims
from orbit.models import DLT
from orbit.diagnostics.plot import plot_predicted_data
# log-transformed data
df = load_iclaims()
# train-test split
test_size = 52
train_df = df[:-test_size]
test_df = df[-test_size:]
dlt = DLT(
response_col='claims', date_col='week',
regressor_col=['trend.unemploy', 'trend.filling', 'trend.job'],
seasonality=52,
)
dlt.fit(df=train_df)
# outcomes data frame
predicted_df = dlt.predict(df=test_df)
plot_predicted_data(
training_actual_df=train_df, predicted_df=predicted_df,
date_col=dlt.date_col, actual_col=dlt.response_col,
test_actual_df=test_df
)
```

## Demo
Nowcasting with Regression in DLT:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/Orbit_Tutorial.ipynb)
Backtest on M3 Data:
[](https://colab.research.google.com/github/edwinnglabs/ts-playground/blob/master/orbit_m3_backtest.ipynb)
More examples can be found under [tutorials](./docs/tutorials)
and [examples](./examples).
# Contributing
We welcome community contributors to the project. Before you start, please read our
[code of conduct](CODE_OF_CONDUCT.md) and check out
[contributing guidelines](CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](./docs/changelog.rst).
# References
## Presentations
Check out the ongoing [deck](https://docs.google.com/presentation/d/1WfTtXAW3rud4TX9HtB3NkE6buDE8tWk6BKZ2hRNXjCI/edit?usp=sharing) for scope and roadmap of the project. An older deck used in the [meet-up](https://www.meetup.com/UberEvents/events/279446143/) during July 2021 can also be found [here](https://docs.google.com/presentation/d/1R0Ol8xahIE6XlrAjAi0ewu4nRxo-wQn8w6U7z-uiOzI/edit?usp=sharing).
## Citation
To cite Orbit in publications, refer to the following whitepaper:
[Orbit: Probabilistic Forecast with Exponential Smoothing](https://arxiv.org/abs/2004.08492)
Bibtex:
```
@misc{
ng2020orbit,
title={Orbit: Probabilistic Forecast with Exponential Smoothing},
author={Edwin Ng,
Zhishi Wang,
Huigang Chen,
Steve Yang,
Slawek Smyl},
year={2020}, eprint={2004.08492}, archivePrefix={arXiv}, primaryClass={stat.CO}
}
```
## Papers
- Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.
- Hoffman, M.D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
J. Mach. Learn. Res., 15(1), pp.1593-1623, 2014.
- Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. Forecasting with exponential smoothing:
the state space approach. Springer Science & Business Media, 2008.
- Smyl, S. Zhang, Q. Fitting and Extending Exponential Smoothing Models with Stan.
International Symposium on Forecasting, 2015.
## Related projects
- [Pyro](https://github.com/pyro-ppl/pyro)
- [Stan](https://github.com/stan-dev/stan)
- [Rlgt](https://cran.r-project.org/web/packages/Rlgt/index.html)
- [forecast](https://github.com/robjhyndman/forecast)
- [prophet](https://facebook.github.io/prophet/)
%prep
%autosetup -n orbit-ml-1.1.4.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-orbit-ml -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.4.2-1
- Package Spec generated
|