summaryrefslogtreecommitdiff
path: root/python-pandera.spec
blob: cb26e47e1d8b62cc8f0ddf7e95bc540e5b8ea353 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
%global _empty_manifest_terminate_build 0
Name:		python-pandera
Version:	0.14.5
Release:	1
Summary:	A light-weight and flexible data validation and testing tool for statistical data objects.
License:	MIT
URL:		https://github.com/pandera-dev/pandera
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/7b/09/ce690eb6248a37a773e975998fd291e3094c2410649a61ac0c3378814e50/pandera-0.14.5.tar.gz
BuildArch:	noarch

Requires:	python3-multimethod
Requires:	python3-numpy
Requires:	python3-packaging
Requires:	python3-pandas
Requires:	python3-pydantic
Requires:	python3-typing-inspect
Requires:	python3-wrapt
Requires:	python3-typing-extensions
Requires:	python3-black
Requires:	python3-pandas-stubs
Requires:	python3-fastapi
Requires:	python3-ray
Requires:	python3-dask
Requires:	python3-geopandas
Requires:	python3-pyspark
Requires:	python3-scipy
Requires:	python3-pyyaml
Requires:	python3-shapely
Requires:	python3-modin
Requires:	python3-frictionless
Requires:	python3-hypothesis
Requires:	python3-dask
Requires:	python3-fastapi
Requires:	python3-geopandas
Requires:	python3-shapely
Requires:	python3-scipy
Requires:	python3-pyyaml
Requires:	python3-black
Requires:	python3-frictionless
Requires:	python3-modin
Requires:	python3-ray
Requires:	python3-dask
Requires:	python3-modin
Requires:	python3-dask
Requires:	python3-modin
Requires:	python3-ray
Requires:	python3-pandas-stubs
Requires:	python3-pyspark
Requires:	python3-hypothesis

%description
<br>
<div align="center"><img src="https://raw.githubusercontent.com/pandera-dev/pandera/main/docs/source/_static/pandera-banner.png" width="400"></div>

<hr>

# A Statistical Data Testing Toolkit

*A data validation library for scientists, engineers, and analysts seeking
correctness.*

<br>

[![CI Build](https://github.com/pandera-dev/pandera/workflows/CI%20Tests/badge.svg?branch=main)](https://github.com/pandera-dev/pandera/actions?query=workflow%3A%22CI+Tests%22+branch%3Amain)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=stable)](https://pandera.readthedocs.io/en/stable/?badge=stable)
[![PyPI version shields.io](https://img.shields.io/pypi/v/pandera.svg)](https://pypi.org/project/pandera/)
[![PyPI license](https://img.shields.io/pypi/l/pandera.svg)](https://pypi.python.org/pypi/)
[![pyOpenSci](https://tinyurl.com/y22nb8up)](https://github.com/pyOpenSci/software-review/issues/12)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=latest)](https://pandera.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/unionai-oss/pandera/branch/main/graph/badge.svg)](https://codecov.io/gh/pandera-dev/pandera)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pandera.svg)](https://pypi.python.org/pypi/pandera/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)
[![asv](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://pandera-dev.github.io/pandera-asv-logs/)
[![Downloads](https://pepy.tech/badge/pandera/month)](https://pepy.tech/project/pandera)
[![Downloads](https://pepy.tech/badge/pandera)](https://pepy.tech/project/pandera)
[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandera?label=conda%20downloads)](https://anaconda.org/conda-forge/pandera)
[![Discord](https://img.shields.io/badge/discord-chat-purple?color=%235765F2&label=discord&logo=discord)](https://discord.gg/vyanhWuaKB)

`pandera` provides a flexible and expressive API for performing data
validation on dataframe-like objects to make data processing pipelines more
readable and robust.

Dataframes contain information that `pandera` explicitly validates at runtime.
This is useful in production-critical or reproducible research settings. With
`pandera`, you can:

1. Define a schema once and use it to validate
   [different dataframe types](https://pandera.readthedocs.io/en/stable/supported_libraries.html)
   including [pandas](http://pandas.pydata.org), [dask](https://dask.org),
   [modin](https://modin.readthedocs.io/), and [pyspark](https://spark.apache.org/docs/3.2.0/api/python/user_guide/pandas_on_spark/index.html).
1. [Check](https://pandera.readthedocs.io/en/stable/checks.html) the types and
   properties of columns in a `DataFrame` or values in a `Series`.
1. Perform more complex statistical validation like
   [hypothesis testing](https://pandera.readthedocs.io/en/stable/hypothesis.html#hypothesis).
1. Seamlessly integrate with existing data analysis/processing pipelines
   via [function decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators).
1. Define dataframe models with the
   [class-based API](https://pandera.readthedocs.io/en/stable/dataframe_models.html#dataframe-models)
   with pydantic-style syntax and validate dataframes using the typing syntax.
1. [Synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html#data-synthesis-strategies)
   from schema objects for property-based testing with pandas data structures.
1. [Lazily Validate](https://pandera.readthedocs.io/en/stable/lazy_validation.html)
   dataframes so that all validation checks are executed before raising an error.
1. [Integrate](https://pandera.readthedocs.io/en/stable/integrations.html) with
   a rich ecosystem of python tools like [pydantic](https://pydantic-docs.helpmanual.io),
   [fastapi](https://fastapi.tiangolo.com/), and [mypy](http://mypy-lang.org/).

## Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io


## Install

Using pip:

```
pip install pandera
```

Using conda:

```
conda install -c conda-forge pandera
```

### Extras

Installing additional functionality:

<details>

<summary><i>pip</i></summary>

```bash
pip install pandera[hypotheses]  # hypothesis checks
pip install pandera[io]          # yaml/script schema io utilities
pip install pandera[strategies]  # data synthesis strategies
pip install pandera[mypy]        # enable static type-linting of pandas
pip install pandera[fastapi]     # fastapi integration
pip install pandera[dask]        # validate dask dataframes
pip install pandera[pyspark]     # validate pyspark dataframes
pip install pandera[modin]       # validate modin dataframes
pip install pandera[modin-ray]   # validate modin dataframes with ray
pip install pandera[modin-dask]  # validate modin dataframes with dask
pip install pandera[geopandas]   # validate geopandas geodataframes
```

</details>

<details>

<summary><i>conda</i></summary>

```bash
conda install -c conda-forge pandera-hypotheses  # hypothesis checks
conda install -c conda-forge pandera-io          # yaml/script schema io utilities
conda install -c conda-forge pandera-strategies  # data synthesis strategies
conda install -c conda-forge pandera-mypy        # enable static type-linting of pandas
conda install -c conda-forge pandera-fastapi     # fastapi integration
conda install -c conda-forge pandera-dask        # validate dask dataframes
conda install -c conda-forge pandera-pyspark     # validate pyspark dataframes
conda install -c conda-forge pandera-modin       # validate modin dataframes
conda install -c conda-forge pandera-modin-ray   # validate modin dataframes with ray
conda install -c conda-forge pandera-modin-dask  # validate modin dataframes with dask
conda install -c conda-forge pandera-geopandas   # validate geopandas geodataframes
```

</details>

## Quick Start

```python
import pandas as pd
import pandera as pa


# data to validate
df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

# define schema
schema = pa.DataFrameSchema({
    "column1": pa.Column(int, checks=pa.Check.le(10)),
    "column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
    "column3": pa.Column(str, checks=[
        pa.Check.str_startswith("value_"),
        # define custom checks as functions that take a series as input and
        # outputs a boolean or boolean Series
        pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

validated_df = schema(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1
```

## DataFrame Model

`pandera` also provides an alternative API for expressing schemas inspired
by [dataclasses](https://docs.python.org/3/library/dataclasses.html) and
[pydantic](https://pydantic-docs.helpmanual.io/). The equivalent `DataFrameModel`
for the above `DataFrameSchema` would be:


```python
from pandera.typing import Series

class Schema(pa.DataFrameModel):

    column1: Series[int] = pa.Field(le=10)
    column2: Series[float] = pa.Field(lt=-1.2)
    column3: Series[str] = pa.Field(str_startswith="value_")

    @pa.check("column3")
    def column_3_check(cls, series: Series[str]) -> Series[bool]:
        """Check that values have two elements after being split with '_'"""
        return series.str.split("_", expand=True).shape[1] == 2

Schema.validate(df)
```

## Development Installation

```
git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements-dev.txt
pip install -e .
```

## Tests

```
pip install pytest
pytest tests
```

## Contributing to pandera [![GitHub contributors](https://img.shields.io/github/contributors/pandera-dev/pandera.svg)](https://github.com/pandera-dev/pandera/graphs/contributors)

All contributions, bug reports, bug fixes, documentation improvements,
enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the
[contributing guide](https://github.com/pandera-dev/pandera/blob/main/.github/CONTRIBUTING.md)
on GitHub.

## Issues

Go [here](https://github.com/pandera-dev/pandera/issues) to submit feature
requests or bugfixes.

## Need Help?

There are many ways of getting help with your questions. You can ask a question
on [Github Discussions](https://github.com/pandera-dev/pandera/discussions/categories/q-a)
page or reach out to the maintainers and pandera community on
[Discord](https://discord.gg/vyanhWuaKB)

## Why `pandera`?

- [dataframe-centric data types](https://pandera.readthedocs.io/en/stable/dtypes.html),
  [column nullability](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#null-values-in-columns),
  and [uniqueness](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#validating-the-joint-uniqueness-of-columns)
  are first-class concepts.
- Define [dataframe models](https://pandera.readthedocs.io/en/stable/schema_models.html) with the class-based API with
  [pydantic](https://pydantic-docs.helpmanual.io/)-style syntax and validate dataframes using the typing syntax.
- `check_input` and `check_output` [decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators-for-pipeline-integration)
  enable seamless integration with existing code.
- [`Check`s](https://pandera.readthedocs.io/en/stable/checks.html) provide flexibility and performance by providing access to `pandas`
  API by design and offers built-in checks for common data tests.
- [`Hypothesis`](https://pandera.readthedocs.io/en/stable/hypothesis.html) class provides a tidy-first interface for statistical hypothesis
  testing.
- `Check`s and `Hypothesis` objects support both [tidy and wide data validation](https://pandera.readthedocs.io/en/stable/checks.html#wide-checks).
- Use schemas as generative contracts to [synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html) for unit testing.
- [Schema inference](https://pandera.readthedocs.io/en/stable/schema_inference.html) allows you to bootstrap schemas from data.

## Alternative Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

**Generic Python object data validation**

- [voloptuous](https://github.com/alecthomas/voluptuous)
- [schema](https://github.com/keleshev/schema)

**`pandas`-specific data validation**

- [opulent-pandas](https://github.com/danielvdende/opulent-pandas)
- [PandasSchema](https://github.com/TMiguelT/PandasSchema)
- [pandas-validator](https://github.com/c-data/pandas-validator)
- [table_enforcer](https://github.com/xguse/table_enforcer)
- [dataenforce](https://github.com/CedricFR/dataenforce)
- [strictly typed pandas](https://github.com/nanne-aben/strictly_typed_pandas)
- [marshmallow-dataframe](https://github.com/facultyai/marshmallow-dataframe)

**Other tools for data validation**

- [great_expectations](https://github.com/great-expectations/great_expectations)
- [frictionless schema](https://framework.frictionlessdata.io/docs/guides/framework/schema-guide/)

## How to Cite

If you use `pandera` in the context of academic or industry research, please
consider citing the **paper** and/or **software package**.

### [Paper](https://conference.scipy.org/proceedings/scipy2020/niels_bantilan.html)

```
@InProceedings{ niels_bantilan-proc-scipy-2020,
  author    = { {N}iels {B}antilan },
  title     = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
  booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
  pages     = { 116 - 124 },
  year      = { 2020 },
  editor    = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
  doi       = { 10.25080/Majora-342d178e-010 }
}
```

### Software Package

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)


## License and Credits

`pandera` is licensed under the [MIT license](license.txt) and is written and
maintained by Niels Bantilan (niels@pandera.ci)


%package -n python3-pandera
Summary:	A light-weight and flexible data validation and testing tool for statistical data objects.
Provides:	python-pandera
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pandera
<br>
<div align="center"><img src="https://raw.githubusercontent.com/pandera-dev/pandera/main/docs/source/_static/pandera-banner.png" width="400"></div>

<hr>

# A Statistical Data Testing Toolkit

*A data validation library for scientists, engineers, and analysts seeking
correctness.*

<br>

[![CI Build](https://github.com/pandera-dev/pandera/workflows/CI%20Tests/badge.svg?branch=main)](https://github.com/pandera-dev/pandera/actions?query=workflow%3A%22CI+Tests%22+branch%3Amain)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=stable)](https://pandera.readthedocs.io/en/stable/?badge=stable)
[![PyPI version shields.io](https://img.shields.io/pypi/v/pandera.svg)](https://pypi.org/project/pandera/)
[![PyPI license](https://img.shields.io/pypi/l/pandera.svg)](https://pypi.python.org/pypi/)
[![pyOpenSci](https://tinyurl.com/y22nb8up)](https://github.com/pyOpenSci/software-review/issues/12)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=latest)](https://pandera.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/unionai-oss/pandera/branch/main/graph/badge.svg)](https://codecov.io/gh/pandera-dev/pandera)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pandera.svg)](https://pypi.python.org/pypi/pandera/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)
[![asv](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://pandera-dev.github.io/pandera-asv-logs/)
[![Downloads](https://pepy.tech/badge/pandera/month)](https://pepy.tech/project/pandera)
[![Downloads](https://pepy.tech/badge/pandera)](https://pepy.tech/project/pandera)
[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandera?label=conda%20downloads)](https://anaconda.org/conda-forge/pandera)
[![Discord](https://img.shields.io/badge/discord-chat-purple?color=%235765F2&label=discord&logo=discord)](https://discord.gg/vyanhWuaKB)

`pandera` provides a flexible and expressive API for performing data
validation on dataframe-like objects to make data processing pipelines more
readable and robust.

Dataframes contain information that `pandera` explicitly validates at runtime.
This is useful in production-critical or reproducible research settings. With
`pandera`, you can:

1. Define a schema once and use it to validate
   [different dataframe types](https://pandera.readthedocs.io/en/stable/supported_libraries.html)
   including [pandas](http://pandas.pydata.org), [dask](https://dask.org),
   [modin](https://modin.readthedocs.io/), and [pyspark](https://spark.apache.org/docs/3.2.0/api/python/user_guide/pandas_on_spark/index.html).
1. [Check](https://pandera.readthedocs.io/en/stable/checks.html) the types and
   properties of columns in a `DataFrame` or values in a `Series`.
1. Perform more complex statistical validation like
   [hypothesis testing](https://pandera.readthedocs.io/en/stable/hypothesis.html#hypothesis).
1. Seamlessly integrate with existing data analysis/processing pipelines
   via [function decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators).
1. Define dataframe models with the
   [class-based API](https://pandera.readthedocs.io/en/stable/dataframe_models.html#dataframe-models)
   with pydantic-style syntax and validate dataframes using the typing syntax.
1. [Synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html#data-synthesis-strategies)
   from schema objects for property-based testing with pandas data structures.
1. [Lazily Validate](https://pandera.readthedocs.io/en/stable/lazy_validation.html)
   dataframes so that all validation checks are executed before raising an error.
1. [Integrate](https://pandera.readthedocs.io/en/stable/integrations.html) with
   a rich ecosystem of python tools like [pydantic](https://pydantic-docs.helpmanual.io),
   [fastapi](https://fastapi.tiangolo.com/), and [mypy](http://mypy-lang.org/).

## Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io


## Install

Using pip:

```
pip install pandera
```

Using conda:

```
conda install -c conda-forge pandera
```

### Extras

Installing additional functionality:

<details>

<summary><i>pip</i></summary>

```bash
pip install pandera[hypotheses]  # hypothesis checks
pip install pandera[io]          # yaml/script schema io utilities
pip install pandera[strategies]  # data synthesis strategies
pip install pandera[mypy]        # enable static type-linting of pandas
pip install pandera[fastapi]     # fastapi integration
pip install pandera[dask]        # validate dask dataframes
pip install pandera[pyspark]     # validate pyspark dataframes
pip install pandera[modin]       # validate modin dataframes
pip install pandera[modin-ray]   # validate modin dataframes with ray
pip install pandera[modin-dask]  # validate modin dataframes with dask
pip install pandera[geopandas]   # validate geopandas geodataframes
```

</details>

<details>

<summary><i>conda</i></summary>

```bash
conda install -c conda-forge pandera-hypotheses  # hypothesis checks
conda install -c conda-forge pandera-io          # yaml/script schema io utilities
conda install -c conda-forge pandera-strategies  # data synthesis strategies
conda install -c conda-forge pandera-mypy        # enable static type-linting of pandas
conda install -c conda-forge pandera-fastapi     # fastapi integration
conda install -c conda-forge pandera-dask        # validate dask dataframes
conda install -c conda-forge pandera-pyspark     # validate pyspark dataframes
conda install -c conda-forge pandera-modin       # validate modin dataframes
conda install -c conda-forge pandera-modin-ray   # validate modin dataframes with ray
conda install -c conda-forge pandera-modin-dask  # validate modin dataframes with dask
conda install -c conda-forge pandera-geopandas   # validate geopandas geodataframes
```

</details>

## Quick Start

```python
import pandas as pd
import pandera as pa


# data to validate
df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

# define schema
schema = pa.DataFrameSchema({
    "column1": pa.Column(int, checks=pa.Check.le(10)),
    "column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
    "column3": pa.Column(str, checks=[
        pa.Check.str_startswith("value_"),
        # define custom checks as functions that take a series as input and
        # outputs a boolean or boolean Series
        pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

validated_df = schema(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1
```

## DataFrame Model

`pandera` also provides an alternative API for expressing schemas inspired
by [dataclasses](https://docs.python.org/3/library/dataclasses.html) and
[pydantic](https://pydantic-docs.helpmanual.io/). The equivalent `DataFrameModel`
for the above `DataFrameSchema` would be:


```python
from pandera.typing import Series

class Schema(pa.DataFrameModel):

    column1: Series[int] = pa.Field(le=10)
    column2: Series[float] = pa.Field(lt=-1.2)
    column3: Series[str] = pa.Field(str_startswith="value_")

    @pa.check("column3")
    def column_3_check(cls, series: Series[str]) -> Series[bool]:
        """Check that values have two elements after being split with '_'"""
        return series.str.split("_", expand=True).shape[1] == 2

Schema.validate(df)
```

## Development Installation

```
git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements-dev.txt
pip install -e .
```

## Tests

```
pip install pytest
pytest tests
```

## Contributing to pandera [![GitHub contributors](https://img.shields.io/github/contributors/pandera-dev/pandera.svg)](https://github.com/pandera-dev/pandera/graphs/contributors)

All contributions, bug reports, bug fixes, documentation improvements,
enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the
[contributing guide](https://github.com/pandera-dev/pandera/blob/main/.github/CONTRIBUTING.md)
on GitHub.

## Issues

Go [here](https://github.com/pandera-dev/pandera/issues) to submit feature
requests or bugfixes.

## Need Help?

There are many ways of getting help with your questions. You can ask a question
on [Github Discussions](https://github.com/pandera-dev/pandera/discussions/categories/q-a)
page or reach out to the maintainers and pandera community on
[Discord](https://discord.gg/vyanhWuaKB)

## Why `pandera`?

- [dataframe-centric data types](https://pandera.readthedocs.io/en/stable/dtypes.html),
  [column nullability](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#null-values-in-columns),
  and [uniqueness](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#validating-the-joint-uniqueness-of-columns)
  are first-class concepts.
- Define [dataframe models](https://pandera.readthedocs.io/en/stable/schema_models.html) with the class-based API with
  [pydantic](https://pydantic-docs.helpmanual.io/)-style syntax and validate dataframes using the typing syntax.
- `check_input` and `check_output` [decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators-for-pipeline-integration)
  enable seamless integration with existing code.
- [`Check`s](https://pandera.readthedocs.io/en/stable/checks.html) provide flexibility and performance by providing access to `pandas`
  API by design and offers built-in checks for common data tests.
- [`Hypothesis`](https://pandera.readthedocs.io/en/stable/hypothesis.html) class provides a tidy-first interface for statistical hypothesis
  testing.
- `Check`s and `Hypothesis` objects support both [tidy and wide data validation](https://pandera.readthedocs.io/en/stable/checks.html#wide-checks).
- Use schemas as generative contracts to [synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html) for unit testing.
- [Schema inference](https://pandera.readthedocs.io/en/stable/schema_inference.html) allows you to bootstrap schemas from data.

## Alternative Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

**Generic Python object data validation**

- [voloptuous](https://github.com/alecthomas/voluptuous)
- [schema](https://github.com/keleshev/schema)

**`pandas`-specific data validation**

- [opulent-pandas](https://github.com/danielvdende/opulent-pandas)
- [PandasSchema](https://github.com/TMiguelT/PandasSchema)
- [pandas-validator](https://github.com/c-data/pandas-validator)
- [table_enforcer](https://github.com/xguse/table_enforcer)
- [dataenforce](https://github.com/CedricFR/dataenforce)
- [strictly typed pandas](https://github.com/nanne-aben/strictly_typed_pandas)
- [marshmallow-dataframe](https://github.com/facultyai/marshmallow-dataframe)

**Other tools for data validation**

- [great_expectations](https://github.com/great-expectations/great_expectations)
- [frictionless schema](https://framework.frictionlessdata.io/docs/guides/framework/schema-guide/)

## How to Cite

If you use `pandera` in the context of academic or industry research, please
consider citing the **paper** and/or **software package**.

### [Paper](https://conference.scipy.org/proceedings/scipy2020/niels_bantilan.html)

```
@InProceedings{ niels_bantilan-proc-scipy-2020,
  author    = { {N}iels {B}antilan },
  title     = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
  booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
  pages     = { 116 - 124 },
  year      = { 2020 },
  editor    = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
  doi       = { 10.25080/Majora-342d178e-010 }
}
```

### Software Package

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)


## License and Credits

`pandera` is licensed under the [MIT license](license.txt) and is written and
maintained by Niels Bantilan (niels@pandera.ci)


%package help
Summary:	Development documents and examples for pandera
Provides:	python3-pandera-doc
%description help
<br>
<div align="center"><img src="https://raw.githubusercontent.com/pandera-dev/pandera/main/docs/source/_static/pandera-banner.png" width="400"></div>

<hr>

# A Statistical Data Testing Toolkit

*A data validation library for scientists, engineers, and analysts seeking
correctness.*

<br>

[![CI Build](https://github.com/pandera-dev/pandera/workflows/CI%20Tests/badge.svg?branch=main)](https://github.com/pandera-dev/pandera/actions?query=workflow%3A%22CI+Tests%22+branch%3Amain)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=stable)](https://pandera.readthedocs.io/en/stable/?badge=stable)
[![PyPI version shields.io](https://img.shields.io/pypi/v/pandera.svg)](https://pypi.org/project/pandera/)
[![PyPI license](https://img.shields.io/pypi/l/pandera.svg)](https://pypi.python.org/pypi/)
[![pyOpenSci](https://tinyurl.com/y22nb8up)](https://github.com/pyOpenSci/software-review/issues/12)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![Documentation Status](https://readthedocs.org/projects/pandera/badge/?version=latest)](https://pandera.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/unionai-oss/pandera/branch/main/graph/badge.svg)](https://codecov.io/gh/pandera-dev/pandera)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pandera.svg)](https://pypi.python.org/pypi/pandera/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)
[![asv](http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat)](https://pandera-dev.github.io/pandera-asv-logs/)
[![Downloads](https://pepy.tech/badge/pandera/month)](https://pepy.tech/project/pandera)
[![Downloads](https://pepy.tech/badge/pandera)](https://pepy.tech/project/pandera)
[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandera?label=conda%20downloads)](https://anaconda.org/conda-forge/pandera)
[![Discord](https://img.shields.io/badge/discord-chat-purple?color=%235765F2&label=discord&logo=discord)](https://discord.gg/vyanhWuaKB)

`pandera` provides a flexible and expressive API for performing data
validation on dataframe-like objects to make data processing pipelines more
readable and robust.

Dataframes contain information that `pandera` explicitly validates at runtime.
This is useful in production-critical or reproducible research settings. With
`pandera`, you can:

1. Define a schema once and use it to validate
   [different dataframe types](https://pandera.readthedocs.io/en/stable/supported_libraries.html)
   including [pandas](http://pandas.pydata.org), [dask](https://dask.org),
   [modin](https://modin.readthedocs.io/), and [pyspark](https://spark.apache.org/docs/3.2.0/api/python/user_guide/pandas_on_spark/index.html).
1. [Check](https://pandera.readthedocs.io/en/stable/checks.html) the types and
   properties of columns in a `DataFrame` or values in a `Series`.
1. Perform more complex statistical validation like
   [hypothesis testing](https://pandera.readthedocs.io/en/stable/hypothesis.html#hypothesis).
1. Seamlessly integrate with existing data analysis/processing pipelines
   via [function decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators).
1. Define dataframe models with the
   [class-based API](https://pandera.readthedocs.io/en/stable/dataframe_models.html#dataframe-models)
   with pydantic-style syntax and validate dataframes using the typing syntax.
1. [Synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html#data-synthesis-strategies)
   from schema objects for property-based testing with pandas data structures.
1. [Lazily Validate](https://pandera.readthedocs.io/en/stable/lazy_validation.html)
   dataframes so that all validation checks are executed before raising an error.
1. [Integrate](https://pandera.readthedocs.io/en/stable/integrations.html) with
   a rich ecosystem of python tools like [pydantic](https://pydantic-docs.helpmanual.io),
   [fastapi](https://fastapi.tiangolo.com/), and [mypy](http://mypy-lang.org/).

## Documentation

The official documentation is hosted on ReadTheDocs: https://pandera.readthedocs.io


## Install

Using pip:

```
pip install pandera
```

Using conda:

```
conda install -c conda-forge pandera
```

### Extras

Installing additional functionality:

<details>

<summary><i>pip</i></summary>

```bash
pip install pandera[hypotheses]  # hypothesis checks
pip install pandera[io]          # yaml/script schema io utilities
pip install pandera[strategies]  # data synthesis strategies
pip install pandera[mypy]        # enable static type-linting of pandas
pip install pandera[fastapi]     # fastapi integration
pip install pandera[dask]        # validate dask dataframes
pip install pandera[pyspark]     # validate pyspark dataframes
pip install pandera[modin]       # validate modin dataframes
pip install pandera[modin-ray]   # validate modin dataframes with ray
pip install pandera[modin-dask]  # validate modin dataframes with dask
pip install pandera[geopandas]   # validate geopandas geodataframes
```

</details>

<details>

<summary><i>conda</i></summary>

```bash
conda install -c conda-forge pandera-hypotheses  # hypothesis checks
conda install -c conda-forge pandera-io          # yaml/script schema io utilities
conda install -c conda-forge pandera-strategies  # data synthesis strategies
conda install -c conda-forge pandera-mypy        # enable static type-linting of pandas
conda install -c conda-forge pandera-fastapi     # fastapi integration
conda install -c conda-forge pandera-dask        # validate dask dataframes
conda install -c conda-forge pandera-pyspark     # validate pyspark dataframes
conda install -c conda-forge pandera-modin       # validate modin dataframes
conda install -c conda-forge pandera-modin-ray   # validate modin dataframes with ray
conda install -c conda-forge pandera-modin-dask  # validate modin dataframes with dask
conda install -c conda-forge pandera-geopandas   # validate geopandas geodataframes
```

</details>

## Quick Start

```python
import pandas as pd
import pandera as pa


# data to validate
df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

# define schema
schema = pa.DataFrameSchema({
    "column1": pa.Column(int, checks=pa.Check.le(10)),
    "column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
    "column3": pa.Column(str, checks=[
        pa.Check.str_startswith("value_"),
        # define custom checks as functions that take a series as input and
        # outputs a boolean or boolean Series
        pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

validated_df = schema(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1
```

## DataFrame Model

`pandera` also provides an alternative API for expressing schemas inspired
by [dataclasses](https://docs.python.org/3/library/dataclasses.html) and
[pydantic](https://pydantic-docs.helpmanual.io/). The equivalent `DataFrameModel`
for the above `DataFrameSchema` would be:


```python
from pandera.typing import Series

class Schema(pa.DataFrameModel):

    column1: Series[int] = pa.Field(le=10)
    column2: Series[float] = pa.Field(lt=-1.2)
    column3: Series[str] = pa.Field(str_startswith="value_")

    @pa.check("column3")
    def column_3_check(cls, series: Series[str]) -> Series[bool]:
        """Check that values have two elements after being split with '_'"""
        return series.str.split("_", expand=True).shape[1] == 2

Schema.validate(df)
```

## Development Installation

```
git clone https://github.com/pandera-dev/pandera.git
cd pandera
pip install -r requirements-dev.txt
pip install -e .
```

## Tests

```
pip install pytest
pytest tests
```

## Contributing to pandera [![GitHub contributors](https://img.shields.io/github/contributors/pandera-dev/pandera.svg)](https://github.com/pandera-dev/pandera/graphs/contributors)

All contributions, bug reports, bug fixes, documentation improvements,
enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the
[contributing guide](https://github.com/pandera-dev/pandera/blob/main/.github/CONTRIBUTING.md)
on GitHub.

## Issues

Go [here](https://github.com/pandera-dev/pandera/issues) to submit feature
requests or bugfixes.

## Need Help?

There are many ways of getting help with your questions. You can ask a question
on [Github Discussions](https://github.com/pandera-dev/pandera/discussions/categories/q-a)
page or reach out to the maintainers and pandera community on
[Discord](https://discord.gg/vyanhWuaKB)

## Why `pandera`?

- [dataframe-centric data types](https://pandera.readthedocs.io/en/stable/dtypes.html),
  [column nullability](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#null-values-in-columns),
  and [uniqueness](https://pandera.readthedocs.io/en/stable/dataframe_schemas.html#validating-the-joint-uniqueness-of-columns)
  are first-class concepts.
- Define [dataframe models](https://pandera.readthedocs.io/en/stable/schema_models.html) with the class-based API with
  [pydantic](https://pydantic-docs.helpmanual.io/)-style syntax and validate dataframes using the typing syntax.
- `check_input` and `check_output` [decorators](https://pandera.readthedocs.io/en/stable/decorators.html#decorators-for-pipeline-integration)
  enable seamless integration with existing code.
- [`Check`s](https://pandera.readthedocs.io/en/stable/checks.html) provide flexibility and performance by providing access to `pandas`
  API by design and offers built-in checks for common data tests.
- [`Hypothesis`](https://pandera.readthedocs.io/en/stable/hypothesis.html) class provides a tidy-first interface for statistical hypothesis
  testing.
- `Check`s and `Hypothesis` objects support both [tidy and wide data validation](https://pandera.readthedocs.io/en/stable/checks.html#wide-checks).
- Use schemas as generative contracts to [synthesize data](https://pandera.readthedocs.io/en/stable/data_synthesis_strategies.html) for unit testing.
- [Schema inference](https://pandera.readthedocs.io/en/stable/schema_inference.html) allows you to bootstrap schemas from data.

## Alternative Data Validation Libraries

Here are a few other alternatives for validating Python data structures.

**Generic Python object data validation**

- [voloptuous](https://github.com/alecthomas/voluptuous)
- [schema](https://github.com/keleshev/schema)

**`pandas`-specific data validation**

- [opulent-pandas](https://github.com/danielvdende/opulent-pandas)
- [PandasSchema](https://github.com/TMiguelT/PandasSchema)
- [pandas-validator](https://github.com/c-data/pandas-validator)
- [table_enforcer](https://github.com/xguse/table_enforcer)
- [dataenforce](https://github.com/CedricFR/dataenforce)
- [strictly typed pandas](https://github.com/nanne-aben/strictly_typed_pandas)
- [marshmallow-dataframe](https://github.com/facultyai/marshmallow-dataframe)

**Other tools for data validation**

- [great_expectations](https://github.com/great-expectations/great_expectations)
- [frictionless schema](https://framework.frictionlessdata.io/docs/guides/framework/schema-guide/)

## How to Cite

If you use `pandera` in the context of academic or industry research, please
consider citing the **paper** and/or **software package**.

### [Paper](https://conference.scipy.org/proceedings/scipy2020/niels_bantilan.html)

```
@InProceedings{ niels_bantilan-proc-scipy-2020,
  author    = { {N}iels {B}antilan },
  title     = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
  booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
  pages     = { 116 - 124 },
  year      = { 2020 },
  editor    = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
  doi       = { 10.25080/Majora-342d178e-010 }
}
```

### Software Package

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3385265.svg)](https://doi.org/10.5281/zenodo.3385265)


## License and Credits

`pandera` is licensed under the [MIT license](license.txt) and is written and
maintained by Niels Bantilan (niels@pandera.ci)


%prep
%autosetup -n pandera-0.14.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pandera -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.14.5-1
- Package Spec generated