summaryrefslogtreecommitdiff
path: root/python-papermill.spec
blob: cb3636fb02f180841add171aa0e22cc17093d7bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
%global _empty_manifest_terminate_build 0
Name:		python-papermill
Version:	2.4.0
Release:	1
Summary:	Parametrize and run Jupyter and nteract Notebooks
License:	BSD
URL:		https://github.com/nteract/papermill
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b8/c9/56294fddb4b19b074fece0c277cbe9159501d7bb2e143f477e6d776342ae/papermill-2.4.0.tar.gz
BuildArch:	noarch

Requires:	python3-ansiwrap
Requires:	python3-click
Requires:	python3-pyyaml
Requires:	python3-nbformat
Requires:	python3-nbclient
Requires:	python3-tqdm
Requires:	python3-requests
Requires:	python3-entrypoints
Requires:	python3-tenacity
Requires:	python3-boto3
Requires:	python3-azure-datalake-store
Requires:	python3-azure-storage-blob
Requires:	python3-requests
Requires:	python3-gcsfs
Requires:	python3-pyarrow
Requires:	python3-black
Requires:	python3-azure-datalake-store
Requires:	python3-azure-storage-blob
Requires:	python3-requests
Requires:	python3-black
Requires:	python3-boto3
Requires:	python3-botocore
Requires:	python3-codecov
Requires:	python3-coverage
Requires:	python3-google-compute-engine
Requires:	python3-ipython
Requires:	python3-ipywidgets
Requires:	python3-notebook
Requires:	python3-moto
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-mock
Requires:	python3-pytest-env
Requires:	python3-requests
Requires:	python3-check-manifest
Requires:	python3-attrs
Requires:	python3-pre-commit
Requires:	python3-flake8
Requires:	python3-tox
Requires:	python3-bumpversion
Requires:	python3-recommonmark
Requires:	python3-pip
Requires:	python3-wheel
Requires:	python3-setuptools
Requires:	python3-twine
Requires:	python3-azure-datalake-store
Requires:	python3-azure-storage-blob
Requires:	python3-gcsfs
Requires:	python3-pyarrow
Requires:	python3-black
Requires:	python3-gcsfs
Requires:	python3-PyGithub
Requires:	python3-pyarrow
Requires:	python3-boto3
Requires:	python3-boto3
Requires:	python3-botocore
Requires:	python3-codecov
Requires:	python3-coverage
Requires:	python3-google-compute-engine
Requires:	python3-ipython
Requires:	python3-ipywidgets
Requires:	python3-notebook
Requires:	python3-moto
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-mock
Requires:	python3-pytest-env
Requires:	python3-requests
Requires:	python3-check-manifest
Requires:	python3-attrs
Requires:	python3-pre-commit
Requires:	python3-flake8
Requires:	python3-tox
Requires:	python3-bumpversion
Requires:	python3-recommonmark
Requires:	python3-pip
Requires:	python3-wheel
Requires:	python3-setuptools
Requires:	python3-twine
Requires:	python3-azure-datalake-store
Requires:	python3-azure-storage-blob
Requires:	python3-gcsfs
Requires:	python3-pyarrow
Requires:	python3-black

%description
<!---(binder links generated at https://mybinder.readthedocs.io/en/latest/howto/badges.html and compressed at https://tinyurl.com) -->
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![image](https://codecov.io/github/nteract/papermill/coverage.svg?branch=main)](https://codecov.io/github/nteract/papermill?branch=main)
[![Documentation Status](https://readthedocs.org/projects/papermill/badge/?version=latest)](http://papermill.readthedocs.io/en/latest/?badge=latest)
[![badge](https://tinyurl.com/ybwovtw2)](https://mybinder.org/v2/gh/nteract/papermill/main?filepath=binder%2Fprocess_highlight_dates.ipynb)
[![badge](https://tinyurl.com/y7uz2eh9)](https://mybinder.org/v2/gh/nteract/papermill/main?)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/papermill)](https://pypi.org/project/papermill/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![papermill](https://snyk.io/advisor/python/papermill/badge.svg)](https://snyk.io/advisor/python/papermill)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/papermill/badges/downloads.svg)](https://anaconda.org/conda-forge/papermill)
**papermill** is a tool for parameterizing, executing, and analyzing
Jupyter Notebooks.
Papermill lets you:
-   **parameterize** notebooks
-   **execute** notebooks
This opens up new opportunities for how notebooks can be used. For
example:
-   Perhaps you have a financial report that you wish to run with
    different values on the first or last day of a month or at the
    beginning or end of the year, **using parameters** makes this task
    easier.
-   Do you want to run a notebook and depending on its results, choose a
    particular notebook to run next? You can now programmatically
    **execute a workflow** without having to copy and paste from
    notebook to notebook manually.
Papermill takes an *opinionated* approach to notebook parameterization and
execution based on our experiences using notebooks at scale in data
pipelines.
## Installation
From the command line:
``` {.sourceCode .bash}
pip install papermill
```
For all optional io dependencies, you can specify individual bundles
like `s3`, or `azure` -- or use `all`. To use Black to format parameters you can add as an extra requires ['black'].
``` {.sourceCode .bash}
pip install papermill[all]
```
## Python Version Support
This library currently supports Python 3.7+ versions. As minor Python
versions are officially sunset by the Python org papermill will similarly
drop support in the future.
## Usage
### Parameterizing a Notebook
To parameterize your notebook designate a cell with the tag ``parameters``.
![enable parameters in Jupyter](docs/img/enable_parameters.gif)
Papermill looks for the ``parameters`` cell and treats this cell as defaults for the parameters passed in at execution time. Papermill will add a new cell tagged with ``injected-parameters`` with input parameters in order to overwrite the values in ``parameters``. If no cell is tagged with ``parameters`` the injected cell will be inserted at the top of the notebook.
Additionally, if you rerun notebooks through papermill and it will reuse the ``injected-parameters`` cell from the prior run. In this case Papermill will replace the old ``injected-parameters`` cell with the new run's inputs.
![image](docs/img/parameters.png)
### Executing a Notebook
The two ways to execute the notebook with parameters are: (1) through
the Python API and (2) through the command line interface.
#### Execute via the Python API
``` {.sourceCode .python}
import papermill as pm
pm.execute_notebook(
   'path/to/input.ipynb',
   'path/to/output.ipynb',
   parameters = dict(alpha=0.6, ratio=0.1)
)
```
#### Execute via CLI
Here's an example of a local notebook being executed and output to an
Amazon S3 account:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
**NOTE:**
If you use multiple AWS accounts, and you have [properly configured your AWS  credentials](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html), then you can specify which account to use by setting the `AWS_PROFILE` environment variable at the command-line. For example:
``` {.sourceCode .bash}
$ AWS_PROFILE=dev_account papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
In the above example, two parameters are set: ``alpha`` and ``l1_ratio`` using ``-p`` (``--parameters`` also works). Parameter values that look like booleans or numbers will be interpreted as such. Here are the different ways users may set parameters:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -r version 1.0
```
Using ``-r`` or ``--parameters_raw``, users can set parameters one by one. However, unlike ``-p``, the parameter will remain a string, even if it may be interpreted as a number or boolean.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -f parameters.yaml
```
Using ``-f`` or ``--parameters_file``, users can provide a YAML file from which parameter values should be read.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
alpha: 0.6
l1_ratio: 0.1"
```
Using ``-y`` or ``--parameters_yaml``, users can directly provide a YAML string containing parameter values.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -b YWxwaGE6IDAuNgpsMV9yYXRpbzogMC4xCg==
```
Using ``-b`` or ``--parameters_base64``, users can provide a YAML string, base64-encoded, containing parameter values.
When using YAML to pass arguments, through ``-y``, ``-b`` or ``-f``, parameter values can be arrays or dictionaries:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
x:
    - 0.0
    - 1.0
    - 2.0
    - 3.0
linear_function:
    slope: 3.0
    intercept: 1.0"
```
#### Supported Name Handlers
Papermill supports the following name handlers for input and output paths during execution:
 * Local file system: `local`
 * HTTP, HTTPS protocol:  `http://, https://`
 * Amazon Web Services: [AWS S3](https://aws.amazon.com/s3/) `s3://`
 * Azure: [Azure DataLake Store](https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview), [Azure Blob Store](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview) `adl://, abs://`
 * Google Cloud: [Google Cloud Storage](https://cloud.google.com/storage/) `gs://`

%package -n python3-papermill
Summary:	Parametrize and run Jupyter and nteract Notebooks
Provides:	python-papermill
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-papermill
<!---(binder links generated at https://mybinder.readthedocs.io/en/latest/howto/badges.html and compressed at https://tinyurl.com) -->
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![image](https://codecov.io/github/nteract/papermill/coverage.svg?branch=main)](https://codecov.io/github/nteract/papermill?branch=main)
[![Documentation Status](https://readthedocs.org/projects/papermill/badge/?version=latest)](http://papermill.readthedocs.io/en/latest/?badge=latest)
[![badge](https://tinyurl.com/ybwovtw2)](https://mybinder.org/v2/gh/nteract/papermill/main?filepath=binder%2Fprocess_highlight_dates.ipynb)
[![badge](https://tinyurl.com/y7uz2eh9)](https://mybinder.org/v2/gh/nteract/papermill/main?)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/papermill)](https://pypi.org/project/papermill/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![papermill](https://snyk.io/advisor/python/papermill/badge.svg)](https://snyk.io/advisor/python/papermill)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/papermill/badges/downloads.svg)](https://anaconda.org/conda-forge/papermill)
**papermill** is a tool for parameterizing, executing, and analyzing
Jupyter Notebooks.
Papermill lets you:
-   **parameterize** notebooks
-   **execute** notebooks
This opens up new opportunities for how notebooks can be used. For
example:
-   Perhaps you have a financial report that you wish to run with
    different values on the first or last day of a month or at the
    beginning or end of the year, **using parameters** makes this task
    easier.
-   Do you want to run a notebook and depending on its results, choose a
    particular notebook to run next? You can now programmatically
    **execute a workflow** without having to copy and paste from
    notebook to notebook manually.
Papermill takes an *opinionated* approach to notebook parameterization and
execution based on our experiences using notebooks at scale in data
pipelines.
## Installation
From the command line:
``` {.sourceCode .bash}
pip install papermill
```
For all optional io dependencies, you can specify individual bundles
like `s3`, or `azure` -- or use `all`. To use Black to format parameters you can add as an extra requires ['black'].
``` {.sourceCode .bash}
pip install papermill[all]
```
## Python Version Support
This library currently supports Python 3.7+ versions. As minor Python
versions are officially sunset by the Python org papermill will similarly
drop support in the future.
## Usage
### Parameterizing a Notebook
To parameterize your notebook designate a cell with the tag ``parameters``.
![enable parameters in Jupyter](docs/img/enable_parameters.gif)
Papermill looks for the ``parameters`` cell and treats this cell as defaults for the parameters passed in at execution time. Papermill will add a new cell tagged with ``injected-parameters`` with input parameters in order to overwrite the values in ``parameters``. If no cell is tagged with ``parameters`` the injected cell will be inserted at the top of the notebook.
Additionally, if you rerun notebooks through papermill and it will reuse the ``injected-parameters`` cell from the prior run. In this case Papermill will replace the old ``injected-parameters`` cell with the new run's inputs.
![image](docs/img/parameters.png)
### Executing a Notebook
The two ways to execute the notebook with parameters are: (1) through
the Python API and (2) through the command line interface.
#### Execute via the Python API
``` {.sourceCode .python}
import papermill as pm
pm.execute_notebook(
   'path/to/input.ipynb',
   'path/to/output.ipynb',
   parameters = dict(alpha=0.6, ratio=0.1)
)
```
#### Execute via CLI
Here's an example of a local notebook being executed and output to an
Amazon S3 account:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
**NOTE:**
If you use multiple AWS accounts, and you have [properly configured your AWS  credentials](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html), then you can specify which account to use by setting the `AWS_PROFILE` environment variable at the command-line. For example:
``` {.sourceCode .bash}
$ AWS_PROFILE=dev_account papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
In the above example, two parameters are set: ``alpha`` and ``l1_ratio`` using ``-p`` (``--parameters`` also works). Parameter values that look like booleans or numbers will be interpreted as such. Here are the different ways users may set parameters:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -r version 1.0
```
Using ``-r`` or ``--parameters_raw``, users can set parameters one by one. However, unlike ``-p``, the parameter will remain a string, even if it may be interpreted as a number or boolean.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -f parameters.yaml
```
Using ``-f`` or ``--parameters_file``, users can provide a YAML file from which parameter values should be read.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
alpha: 0.6
l1_ratio: 0.1"
```
Using ``-y`` or ``--parameters_yaml``, users can directly provide a YAML string containing parameter values.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -b YWxwaGE6IDAuNgpsMV9yYXRpbzogMC4xCg==
```
Using ``-b`` or ``--parameters_base64``, users can provide a YAML string, base64-encoded, containing parameter values.
When using YAML to pass arguments, through ``-y``, ``-b`` or ``-f``, parameter values can be arrays or dictionaries:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
x:
    - 0.0
    - 1.0
    - 2.0
    - 3.0
linear_function:
    slope: 3.0
    intercept: 1.0"
```
#### Supported Name Handlers
Papermill supports the following name handlers for input and output paths during execution:
 * Local file system: `local`
 * HTTP, HTTPS protocol:  `http://, https://`
 * Amazon Web Services: [AWS S3](https://aws.amazon.com/s3/) `s3://`
 * Azure: [Azure DataLake Store](https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview), [Azure Blob Store](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview) `adl://, abs://`
 * Google Cloud: [Google Cloud Storage](https://cloud.google.com/storage/) `gs://`

%package help
Summary:	Development documents and examples for papermill
Provides:	python3-papermill-doc
%description help
<!---(binder links generated at https://mybinder.readthedocs.io/en/latest/howto/badges.html and compressed at https://tinyurl.com) -->
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![CI](https://github.com/nteract/papermill/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/nteract/papermill/actions/workflows/ci.yml)
[![image](https://codecov.io/github/nteract/papermill/coverage.svg?branch=main)](https://codecov.io/github/nteract/papermill?branch=main)
[![Documentation Status](https://readthedocs.org/projects/papermill/badge/?version=latest)](http://papermill.readthedocs.io/en/latest/?badge=latest)
[![badge](https://tinyurl.com/ybwovtw2)](https://mybinder.org/v2/gh/nteract/papermill/main?filepath=binder%2Fprocess_highlight_dates.ipynb)
[![badge](https://tinyurl.com/y7uz2eh9)](https://mybinder.org/v2/gh/nteract/papermill/main?)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/papermill)](https://pypi.org/project/papermill/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![papermill](https://snyk.io/advisor/python/papermill/badge.svg)](https://snyk.io/advisor/python/papermill)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/papermill/badges/downloads.svg)](https://anaconda.org/conda-forge/papermill)
**papermill** is a tool for parameterizing, executing, and analyzing
Jupyter Notebooks.
Papermill lets you:
-   **parameterize** notebooks
-   **execute** notebooks
This opens up new opportunities for how notebooks can be used. For
example:
-   Perhaps you have a financial report that you wish to run with
    different values on the first or last day of a month or at the
    beginning or end of the year, **using parameters** makes this task
    easier.
-   Do you want to run a notebook and depending on its results, choose a
    particular notebook to run next? You can now programmatically
    **execute a workflow** without having to copy and paste from
    notebook to notebook manually.
Papermill takes an *opinionated* approach to notebook parameterization and
execution based on our experiences using notebooks at scale in data
pipelines.
## Installation
From the command line:
``` {.sourceCode .bash}
pip install papermill
```
For all optional io dependencies, you can specify individual bundles
like `s3`, or `azure` -- or use `all`. To use Black to format parameters you can add as an extra requires ['black'].
``` {.sourceCode .bash}
pip install papermill[all]
```
## Python Version Support
This library currently supports Python 3.7+ versions. As minor Python
versions are officially sunset by the Python org papermill will similarly
drop support in the future.
## Usage
### Parameterizing a Notebook
To parameterize your notebook designate a cell with the tag ``parameters``.
![enable parameters in Jupyter](docs/img/enable_parameters.gif)
Papermill looks for the ``parameters`` cell and treats this cell as defaults for the parameters passed in at execution time. Papermill will add a new cell tagged with ``injected-parameters`` with input parameters in order to overwrite the values in ``parameters``. If no cell is tagged with ``parameters`` the injected cell will be inserted at the top of the notebook.
Additionally, if you rerun notebooks through papermill and it will reuse the ``injected-parameters`` cell from the prior run. In this case Papermill will replace the old ``injected-parameters`` cell with the new run's inputs.
![image](docs/img/parameters.png)
### Executing a Notebook
The two ways to execute the notebook with parameters are: (1) through
the Python API and (2) through the command line interface.
#### Execute via the Python API
``` {.sourceCode .python}
import papermill as pm
pm.execute_notebook(
   'path/to/input.ipynb',
   'path/to/output.ipynb',
   parameters = dict(alpha=0.6, ratio=0.1)
)
```
#### Execute via CLI
Here's an example of a local notebook being executed and output to an
Amazon S3 account:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
**NOTE:**
If you use multiple AWS accounts, and you have [properly configured your AWS  credentials](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html), then you can specify which account to use by setting the `AWS_PROFILE` environment variable at the command-line. For example:
``` {.sourceCode .bash}
$ AWS_PROFILE=dev_account papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1
```
In the above example, two parameters are set: ``alpha`` and ``l1_ratio`` using ``-p`` (``--parameters`` also works). Parameter values that look like booleans or numbers will be interpreted as such. Here are the different ways users may set parameters:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -r version 1.0
```
Using ``-r`` or ``--parameters_raw``, users can set parameters one by one. However, unlike ``-p``, the parameter will remain a string, even if it may be interpreted as a number or boolean.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -f parameters.yaml
```
Using ``-f`` or ``--parameters_file``, users can provide a YAML file from which parameter values should be read.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
alpha: 0.6
l1_ratio: 0.1"
```
Using ``-y`` or ``--parameters_yaml``, users can directly provide a YAML string containing parameter values.
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -b YWxwaGE6IDAuNgpsMV9yYXRpbzogMC4xCg==
```
Using ``-b`` or ``--parameters_base64``, users can provide a YAML string, base64-encoded, containing parameter values.
When using YAML to pass arguments, through ``-y``, ``-b`` or ``-f``, parameter values can be arrays or dictionaries:
``` {.sourceCode .bash}
$ papermill local/input.ipynb s3://bkt/output.ipynb -y "
x:
    - 0.0
    - 1.0
    - 2.0
    - 3.0
linear_function:
    slope: 3.0
    intercept: 1.0"
```
#### Supported Name Handlers
Papermill supports the following name handlers for input and output paths during execution:
 * Local file system: `local`
 * HTTP, HTTPS protocol:  `http://, https://`
 * Amazon Web Services: [AWS S3](https://aws.amazon.com/s3/) `s3://`
 * Azure: [Azure DataLake Store](https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview), [Azure Blob Store](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview) `adl://, abs://`
 * Google Cloud: [Google Cloud Storage](https://cloud.google.com/storage/) `gs://`

%prep
%autosetup -n papermill-2.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-papermill -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.0-1
- Package Spec generated