summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 15:11:07 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 15:11:07 +0000
commitdf0ac50752ab5a33cc4625134f2850d0782e9edd (patch)
tree6d1d443d97da4d222a381d570931f02924126500
parent7a7039ea059cd82e79cc41c0a2f5647f15f0fa28 (diff)
automatic import of python-params-flow
-rw-r--r--.gitignore1
-rw-r--r--python-params-flow.spec186
-rw-r--r--sources1
3 files changed, 188 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..0788b87 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/params-flow-0.8.2.tar.gz
diff --git a/python-params-flow.spec b/python-params-flow.spec
new file mode 100644
index 0000000..88e65dd
--- /dev/null
+++ b/python-params-flow.spec
@@ -0,0 +1,186 @@
+%global _empty_manifest_terminate_build 0
+Name: python-params-flow
+Version: 0.8.2
+Release: 1
+Summary: Tensorflow Keras utilities for reducing boilerplate code.
+License: MIT
+URL: https://github.com/kpe/params-flow/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a9/95/ff49f5ebd501f142a6f0aaf42bcfd1c192dc54909d1d9eb84ab031d46056/params-flow-0.8.2.tar.gz
+BuildArch: noarch
+
+
+%description
+|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
+`params-flow`_ provides an alternative style for defining your `Keras`_ model
+or layer configuration in order to reduce the boilerplate code related to
+passing and (de)serializing your model/layer configuration arguments.
+`params-flow`_ encourages this:
+ import params_flow as pf
+ class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones
+ class Params(pf.Layer.Params): # extend one or more base Params configurations
+ num_outputs = None # declare all configuration arguments
+ activation = "gelu" # provide or override super() defaults
+ # do not define an __init__()
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.params.num_outputs]) # access config arguments
+which would be sufficient to pass the right configuration arguments to the
+super layer/model, as well as take care of (de)serialization, so you can concentrate
+on the ``build()`` or ``call()`` implementations, instead of writing boilerplate
+code like this:
+ from tf.keras.layers import Layer
+ class MyDenseLayer(Layer):
+ def __init__(self,
+ num_outputs, # put all of the layer configuration in the constructor
+ activation = "gelu", # provide defaults
+ **kwargs): # allow base layer configuration to be passed to super
+ self.num_outputs = num_outputs
+ self.activation = activation
+ super().__init__(**kwargs)
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.num_outputs]) # access config arguments
+ def get_config(self): # serialize layer configuration, __init__() is the deserializer
+ config = {
+ 'num_outputs': self.num_outputs,
+ 'activation': self.activation
+ }
+ base_config = super().get_config()
+ return dict(list(base_config.items())) + list(config.items())
+
+%package -n python3-params-flow
+Summary: Tensorflow Keras utilities for reducing boilerplate code.
+Provides: python-params-flow
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-params-flow
+|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
+`params-flow`_ provides an alternative style for defining your `Keras`_ model
+or layer configuration in order to reduce the boilerplate code related to
+passing and (de)serializing your model/layer configuration arguments.
+`params-flow`_ encourages this:
+ import params_flow as pf
+ class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones
+ class Params(pf.Layer.Params): # extend one or more base Params configurations
+ num_outputs = None # declare all configuration arguments
+ activation = "gelu" # provide or override super() defaults
+ # do not define an __init__()
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.params.num_outputs]) # access config arguments
+which would be sufficient to pass the right configuration arguments to the
+super layer/model, as well as take care of (de)serialization, so you can concentrate
+on the ``build()`` or ``call()`` implementations, instead of writing boilerplate
+code like this:
+ from tf.keras.layers import Layer
+ class MyDenseLayer(Layer):
+ def __init__(self,
+ num_outputs, # put all of the layer configuration in the constructor
+ activation = "gelu", # provide defaults
+ **kwargs): # allow base layer configuration to be passed to super
+ self.num_outputs = num_outputs
+ self.activation = activation
+ super().__init__(**kwargs)
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.num_outputs]) # access config arguments
+ def get_config(self): # serialize layer configuration, __init__() is the deserializer
+ config = {
+ 'num_outputs': self.num_outputs,
+ 'activation': self.activation
+ }
+ base_config = super().get_config()
+ return dict(list(base_config.items())) + list(config.items())
+
+%package help
+Summary: Development documents and examples for params-flow
+Provides: python3-params-flow-doc
+%description help
+|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
+`params-flow`_ provides an alternative style for defining your `Keras`_ model
+or layer configuration in order to reduce the boilerplate code related to
+passing and (de)serializing your model/layer configuration arguments.
+`params-flow`_ encourages this:
+ import params_flow as pf
+ class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones
+ class Params(pf.Layer.Params): # extend one or more base Params configurations
+ num_outputs = None # declare all configuration arguments
+ activation = "gelu" # provide or override super() defaults
+ # do not define an __init__()
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.params.num_outputs]) # access config arguments
+which would be sufficient to pass the right configuration arguments to the
+super layer/model, as well as take care of (de)serialization, so you can concentrate
+on the ``build()`` or ``call()`` implementations, instead of writing boilerplate
+code like this:
+ from tf.keras.layers import Layer
+ class MyDenseLayer(Layer):
+ def __init__(self,
+ num_outputs, # put all of the layer configuration in the constructor
+ activation = "gelu", # provide defaults
+ **kwargs): # allow base layer configuration to be passed to super
+ self.num_outputs = num_outputs
+ self.activation = activation
+ super().__init__(**kwargs)
+ def build(self, in_shape):
+ self.kernel = self.add_variable("kernel",
+ [int(in_shape[-1]),
+ self.num_outputs]) # access config arguments
+ def get_config(self): # serialize layer configuration, __init__() is the deserializer
+ config = {
+ 'num_outputs': self.num_outputs,
+ 'activation': self.activation
+ }
+ base_config = super().get_config()
+ return dict(list(base_config.items())) + list(config.items())
+
+%prep
+%autosetup -n params-flow-0.8.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-params-flow -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..0dd0b2b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+6be1c75d140491fb9b17644ae22867f0 params-flow-0.8.2.tar.gz