summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-31 04:26:02 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-31 04:26:02 +0000
commitd4e2b9edc9259d8e08ae5090d2beba0756f26bdb (patch)
tree2a78ce5d4fcb3133166e135832a3f32ef2651a25
parentbea8aa5ac1238970ada6670d7abe27fb7516cfec (diff)
automatic import of python-pelion-sagemaker-controller
-rw-r--r--.gitignore1
-rw-r--r--python-pelion-sagemaker-controller.spec359
-rw-r--r--sources1
3 files changed, 361 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..bffb7e6 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pelion_sagemaker_controller-0.1.5.tar.gz
diff --git a/python-pelion-sagemaker-controller.spec b/python-pelion-sagemaker-controller.spec
new file mode 100644
index 0000000..e0b34bc
--- /dev/null
+++ b/python-pelion-sagemaker-controller.spec
@@ -0,0 +1,359 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pelion-sagemaker-controller
+Version: 0.1.5
+Release: 1
+Summary: AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways
+License: Apache 2.0
+URL: https://github.com/DougAnsonAtARM/pelion-sagemaker-controller
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/37/b7/e7f554f6e282b0eb7327244c743cbd5c4a5583ced17bf4b89ae4b366d913/pelion_sagemaker_controller-0.1.5.tar.gz
+BuildArch: noarch
+
+Requires: python3-requests
+Requires: python3-uuid
+
+%description
+## Sagemaker Edge Agent Controller client API for Pelion Edge
+
+#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)
+
+This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.
+
+### Controller API Instance Creation
+
+To create an instance of this API:
+
+ # Required import
+ from pelion_sagemaker_controller import pelion_sagemaker_controller
+
+ #
+ # Invoke constructor with Pelion API Key, Pelion GW Device ID
+ # You can also optionally specify the Pelion API endpoint you want to use
+ #
+ api = pelion_sagemaker_controller.ControllerAPI(
+ api_key='<ak_xxxx>',
+ device_id='<pelion_gw_device_id>',
+ api_endpoint='api.us-east-1.mbedcloud.com'
+ )
+
+
+### Supported Commands
+
+The following commands are supported by this API:
+
+#### Get Configuration
+
+ api.pelion_get_config()
+
+ This call returns a JSON with the current Edge Device representing the
+ Sagemaker service's configuration
+
+#### Set Configuration
+
+ api.pelion_set_config({'foo':'bar'})
+
+ This call updates or adds key/values to the current Edge Device's configuration
+
+#### List Models
+
+ api.pelion_list_models()
+
+ This call returns a JSON outlining all of the loaded models
+
+#### Load Model
+
+ api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call loads up the requested Sagemaker-compiled model whose compiled
+ contents are located within the S3 bucket defined in the configuration
+ and utilized by the Sagemaker service
+
+#### Unload Model
+
+ api.pelion_unload_model('model-name')
+
+ This call unloads the loaded model referenced by the name 'model-name'
+
+#### Reload Model
+
+ api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call is a convenience method for simply performing an "unload" followed by
+ a "load" of a given model using the methods above.
+
+#### Predict
+
+ api.pelion_predict(
+ 'model-name',
+ 's3:///input.data',
+ 's3:///prediction_result.data'
+ )
+
+ This call invokes the model prediction using the specified input.data file that is
+ configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
+ result from the prediction will be stored in a file that will be saved to the same
+ directory in the S3 bucket.
+
+ In addition to S3 bucket support, you can locally reference input/output requirements
+ using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
+ on the Pelion Edge Gateway will contain the specified files.
+
+#### Last Command Result
+
+ api.pelion_last_cmd_result()
+
+ This call returns the last invocation/call results. In cases where predictions take
+ a long time to complete, this call may be used in a polling situation to determine
+ when the prediction operation has completed.
+
+
+
+
+
+%package -n python3-pelion-sagemaker-controller
+Summary: AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways
+Provides: python-pelion-sagemaker-controller
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pelion-sagemaker-controller
+## Sagemaker Edge Agent Controller client API for Pelion Edge
+
+#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)
+
+This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.
+
+### Controller API Instance Creation
+
+To create an instance of this API:
+
+ # Required import
+ from pelion_sagemaker_controller import pelion_sagemaker_controller
+
+ #
+ # Invoke constructor with Pelion API Key, Pelion GW Device ID
+ # You can also optionally specify the Pelion API endpoint you want to use
+ #
+ api = pelion_sagemaker_controller.ControllerAPI(
+ api_key='<ak_xxxx>',
+ device_id='<pelion_gw_device_id>',
+ api_endpoint='api.us-east-1.mbedcloud.com'
+ )
+
+
+### Supported Commands
+
+The following commands are supported by this API:
+
+#### Get Configuration
+
+ api.pelion_get_config()
+
+ This call returns a JSON with the current Edge Device representing the
+ Sagemaker service's configuration
+
+#### Set Configuration
+
+ api.pelion_set_config({'foo':'bar'})
+
+ This call updates or adds key/values to the current Edge Device's configuration
+
+#### List Models
+
+ api.pelion_list_models()
+
+ This call returns a JSON outlining all of the loaded models
+
+#### Load Model
+
+ api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call loads up the requested Sagemaker-compiled model whose compiled
+ contents are located within the S3 bucket defined in the configuration
+ and utilized by the Sagemaker service
+
+#### Unload Model
+
+ api.pelion_unload_model('model-name')
+
+ This call unloads the loaded model referenced by the name 'model-name'
+
+#### Reload Model
+
+ api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call is a convenience method for simply performing an "unload" followed by
+ a "load" of a given model using the methods above.
+
+#### Predict
+
+ api.pelion_predict(
+ 'model-name',
+ 's3:///input.data',
+ 's3:///prediction_result.data'
+ )
+
+ This call invokes the model prediction using the specified input.data file that is
+ configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
+ result from the prediction will be stored in a file that will be saved to the same
+ directory in the S3 bucket.
+
+ In addition to S3 bucket support, you can locally reference input/output requirements
+ using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
+ on the Pelion Edge Gateway will contain the specified files.
+
+#### Last Command Result
+
+ api.pelion_last_cmd_result()
+
+ This call returns the last invocation/call results. In cases where predictions take
+ a long time to complete, this call may be used in a polling situation to determine
+ when the prediction operation has completed.
+
+
+
+
+
+%package help
+Summary: Development documents and examples for pelion-sagemaker-controller
+Provides: python3-pelion-sagemaker-controller-doc
+%description help
+## Sagemaker Edge Agent Controller client API for Pelion Edge
+
+#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)
+
+This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.
+
+### Controller API Instance Creation
+
+To create an instance of this API:
+
+ # Required import
+ from pelion_sagemaker_controller import pelion_sagemaker_controller
+
+ #
+ # Invoke constructor with Pelion API Key, Pelion GW Device ID
+ # You can also optionally specify the Pelion API endpoint you want to use
+ #
+ api = pelion_sagemaker_controller.ControllerAPI(
+ api_key='<ak_xxxx>',
+ device_id='<pelion_gw_device_id>',
+ api_endpoint='api.us-east-1.mbedcloud.com'
+ )
+
+
+### Supported Commands
+
+The following commands are supported by this API:
+
+#### Get Configuration
+
+ api.pelion_get_config()
+
+ This call returns a JSON with the current Edge Device representing the
+ Sagemaker service's configuration
+
+#### Set Configuration
+
+ api.pelion_set_config({'foo':'bar'})
+
+ This call updates or adds key/values to the current Edge Device's configuration
+
+#### List Models
+
+ api.pelion_list_models()
+
+ This call returns a JSON outlining all of the loaded models
+
+#### Load Model
+
+ api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call loads up the requested Sagemaker-compiled model whose compiled
+ contents are located within the S3 bucket defined in the configuration
+ and utilized by the Sagemaker service
+
+#### Unload Model
+
+ api.pelion_unload_model('model-name')
+
+ This call unloads the loaded model referenced by the name 'model-name'
+
+#### Reload Model
+
+ api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
+
+ This call is a convenience method for simply performing an "unload" followed by
+ a "load" of a given model using the methods above.
+
+#### Predict
+
+ api.pelion_predict(
+ 'model-name',
+ 's3:///input.data',
+ 's3:///prediction_result.data'
+ )
+
+ This call invokes the model prediction using the specified input.data file that is
+ configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
+ result from the prediction will be stored in a file that will be saved to the same
+ directory in the S3 bucket.
+
+ In addition to S3 bucket support, you can locally reference input/output requirements
+ using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
+ on the Pelion Edge Gateway will contain the specified files.
+
+#### Last Command Result
+
+ api.pelion_last_cmd_result()
+
+ This call returns the last invocation/call results. In cases where predictions take
+ a long time to complete, this call may be used in a polling situation to determine
+ when the prediction operation has completed.
+
+
+
+
+
+%prep
+%autosetup -n pelion-sagemaker-controller-0.1.5
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pelion-sagemaker-controller -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..fa028f5
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+769c0f1f3bcc714fd95c89de078d1019 pelion_sagemaker_controller-0.1.5.tar.gz