diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-31 04:26:02 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-31 04:26:02 +0000 |
| commit | d4e2b9edc9259d8e08ae5090d2beba0756f26bdb (patch) | |
| tree | 2a78ce5d4fcb3133166e135832a3f32ef2651a25 | |
| parent | bea8aa5ac1238970ada6670d7abe27fb7516cfec (diff) | |
automatic import of python-pelion-sagemaker-controller
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-pelion-sagemaker-controller.spec | 359 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 361 insertions, 0 deletions
@@ -0,0 +1 @@ +/pelion_sagemaker_controller-0.1.5.tar.gz diff --git a/python-pelion-sagemaker-controller.spec b/python-pelion-sagemaker-controller.spec new file mode 100644 index 0000000..e0b34bc --- /dev/null +++ b/python-pelion-sagemaker-controller.spec @@ -0,0 +1,359 @@ +%global _empty_manifest_terminate_build 0 +Name: python-pelion-sagemaker-controller +Version: 0.1.5 +Release: 1 +Summary: AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways +License: Apache 2.0 +URL: https://github.com/DougAnsonAtARM/pelion-sagemaker-controller +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/37/b7/e7f554f6e282b0eb7327244c743cbd5c4a5583ced17bf4b89ae4b366d913/pelion_sagemaker_controller-0.1.5.tar.gz +BuildArch: noarch + +Requires: python3-requests +Requires: python3-uuid + +%description +## Sagemaker Edge Agent Controller client API for Pelion Edge + +#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/) + +This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway. + +### Controller API Instance Creation + +To create an instance of this API: + + # Required import + from pelion_sagemaker_controller import pelion_sagemaker_controller + + # + # Invoke constructor with Pelion API Key, Pelion GW Device ID + # You can also optionally specify the Pelion API endpoint you want to use + # + api = pelion_sagemaker_controller.ControllerAPI( + api_key='<ak_xxxx>', + device_id='<pelion_gw_device_id>', + api_endpoint='api.us-east-1.mbedcloud.com' + ) + + +### Supported Commands + +The following commands are supported by this API: + +#### Get Configuration + + api.pelion_get_config() + + This call returns a JSON with the current Edge Device representing the + Sagemaker service's configuration + +#### Set Configuration + + api.pelion_set_config({'foo':'bar'}) + + This call updates or adds key/values to the current Edge Device's configuration + +#### List Models + + api.pelion_list_models() + + This call returns a JSON outlining all of the loaded models + +#### Load Model + + api.pelion_load_model('model-name','compiled-model-x.y.tar.gz') + + This call loads up the requested Sagemaker-compiled model whose compiled + contents are located within the S3 bucket defined in the configuration + and utilized by the Sagemaker service + +#### Unload Model + + api.pelion_unload_model('model-name') + + This call unloads the loaded model referenced by the name 'model-name' + +#### Reload Model + + api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz') + + This call is a convenience method for simply performing an "unload" followed by + a "load" of a given model using the methods above. + +#### Predict + + api.pelion_predict( + 'model-name', + 's3:///input.data', + 's3:///prediction_result.data' + ) + + This call invokes the model prediction using the specified input.data file that is + configured to be pulled from the Sagemaker S3 bucket (per configuration). The output + result from the prediction will be stored in a file that will be saved to the same + directory in the S3 bucket. + + In addition to S3 bucket support, you can locally reference input/output requirements + using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory + on the Pelion Edge Gateway will contain the specified files. + +#### Last Command Result + + api.pelion_last_cmd_result() + + This call returns the last invocation/call results. In cases where predictions take + a long time to complete, this call may be used in a polling situation to determine + when the prediction operation has completed. + + + + + +%package -n python3-pelion-sagemaker-controller +Summary: AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways +Provides: python-pelion-sagemaker-controller +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-pelion-sagemaker-controller +## Sagemaker Edge Agent Controller client API for Pelion Edge + +#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/) + +This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway. + +### Controller API Instance Creation + +To create an instance of this API: + + # Required import + from pelion_sagemaker_controller import pelion_sagemaker_controller + + # + # Invoke constructor with Pelion API Key, Pelion GW Device ID + # You can also optionally specify the Pelion API endpoint you want to use + # + api = pelion_sagemaker_controller.ControllerAPI( + api_key='<ak_xxxx>', + device_id='<pelion_gw_device_id>', + api_endpoint='api.us-east-1.mbedcloud.com' + ) + + +### Supported Commands + +The following commands are supported by this API: + +#### Get Configuration + + api.pelion_get_config() + + This call returns a JSON with the current Edge Device representing the + Sagemaker service's configuration + +#### Set Configuration + + api.pelion_set_config({'foo':'bar'}) + + This call updates or adds key/values to the current Edge Device's configuration + +#### List Models + + api.pelion_list_models() + + This call returns a JSON outlining all of the loaded models + +#### Load Model + + api.pelion_load_model('model-name','compiled-model-x.y.tar.gz') + + This call loads up the requested Sagemaker-compiled model whose compiled + contents are located within the S3 bucket defined in the configuration + and utilized by the Sagemaker service + +#### Unload Model + + api.pelion_unload_model('model-name') + + This call unloads the loaded model referenced by the name 'model-name' + +#### Reload Model + + api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz') + + This call is a convenience method for simply performing an "unload" followed by + a "load" of a given model using the methods above. + +#### Predict + + api.pelion_predict( + 'model-name', + 's3:///input.data', + 's3:///prediction_result.data' + ) + + This call invokes the model prediction using the specified input.data file that is + configured to be pulled from the Sagemaker S3 bucket (per configuration). The output + result from the prediction will be stored in a file that will be saved to the same + directory in the S3 bucket. + + In addition to S3 bucket support, you can locally reference input/output requirements + using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory + on the Pelion Edge Gateway will contain the specified files. + +#### Last Command Result + + api.pelion_last_cmd_result() + + This call returns the last invocation/call results. In cases where predictions take + a long time to complete, this call may be used in a polling situation to determine + when the prediction operation has completed. + + + + + +%package help +Summary: Development documents and examples for pelion-sagemaker-controller +Provides: python3-pelion-sagemaker-controller-doc +%description help +## Sagemaker Edge Agent Controller client API for Pelion Edge + +#### PyPi: [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/) + +This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway. + +### Controller API Instance Creation + +To create an instance of this API: + + # Required import + from pelion_sagemaker_controller import pelion_sagemaker_controller + + # + # Invoke constructor with Pelion API Key, Pelion GW Device ID + # You can also optionally specify the Pelion API endpoint you want to use + # + api = pelion_sagemaker_controller.ControllerAPI( + api_key='<ak_xxxx>', + device_id='<pelion_gw_device_id>', + api_endpoint='api.us-east-1.mbedcloud.com' + ) + + +### Supported Commands + +The following commands are supported by this API: + +#### Get Configuration + + api.pelion_get_config() + + This call returns a JSON with the current Edge Device representing the + Sagemaker service's configuration + +#### Set Configuration + + api.pelion_set_config({'foo':'bar'}) + + This call updates or adds key/values to the current Edge Device's configuration + +#### List Models + + api.pelion_list_models() + + This call returns a JSON outlining all of the loaded models + +#### Load Model + + api.pelion_load_model('model-name','compiled-model-x.y.tar.gz') + + This call loads up the requested Sagemaker-compiled model whose compiled + contents are located within the S3 bucket defined in the configuration + and utilized by the Sagemaker service + +#### Unload Model + + api.pelion_unload_model('model-name') + + This call unloads the loaded model referenced by the name 'model-name' + +#### Reload Model + + api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz') + + This call is a convenience method for simply performing an "unload" followed by + a "load" of a given model using the methods above. + +#### Predict + + api.pelion_predict( + 'model-name', + 's3:///input.data', + 's3:///prediction_result.data' + ) + + This call invokes the model prediction using the specified input.data file that is + configured to be pulled from the Sagemaker S3 bucket (per configuration). The output + result from the prediction will be stored in a file that will be saved to the same + directory in the S3 bucket. + + In addition to S3 bucket support, you can locally reference input/output requirements + using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory + on the Pelion Edge Gateway will contain the specified files. + +#### Last Command Result + + api.pelion_last_cmd_result() + + This call returns the last invocation/call results. In cases where predictions take + a long time to complete, this call may be used in a polling situation to determine + when the prediction operation has completed. + + + + + +%prep +%autosetup -n pelion-sagemaker-controller-0.1.5 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-pelion-sagemaker-controller -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1 +- Package Spec generated @@ -0,0 +1 @@ +769c0f1f3bcc714fd95c89de078d1019 pelion_sagemaker_controller-0.1.5.tar.gz |
