summaryrefslogtreecommitdiff
path: root/python-pelion-sagemaker-controller.spec
blob: e0b34bc8ebe0e3ba86711236432588100974943f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
%global _empty_manifest_terminate_build 0
Name:		python-pelion-sagemaker-controller
Version:	0.1.5
Release:	1
Summary:	AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways
License:	Apache 2.0
URL:		https://github.com/DougAnsonAtARM/pelion-sagemaker-controller
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/37/b7/e7f554f6e282b0eb7327244c743cbd5c4a5583ced17bf4b89ae4b366d913/pelion_sagemaker_controller-0.1.5.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-uuid

%description
## Sagemaker Edge Agent Controller client API for Pelion Edge 

#### PyPi:  [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)

This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.

### Controller API Instance Creation

To create an instance of this API:
	
	# Required import
	from pelion_sagemaker_controller import pelion_sagemaker_controller
	
	#
	# Invoke constructor with Pelion API Key, Pelion GW Device ID
	# You can also optionally specify the Pelion API endpoint you want to use
	#
	api = pelion_sagemaker_controller.ControllerAPI(
			api_key='<ak_xxxx>', 
			device_id='<pelion_gw_device_id>', 
			api_endpoint='api.us-east-1.mbedcloud.com'
			)
		
		
### Supported Commands

The following commands are supported by this API:

#### Get Configuration

	api.pelion_get_config()
	
	This call returns a JSON with the current Edge Device representing the 
	Sagemaker service's configuration
	
#### Set Configuration

	api.pelion_set_config({'foo':'bar'})
	
	This call updates or adds key/values to the current Edge Device's configuration
	
#### List Models

	api.pelion_list_models()
	
	This call returns a JSON outlining all of the loaded models
	
#### Load Model

	api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
	
	This call loads up the requested Sagemaker-compiled model whose compiled 
	contents are located within the S3 bucket defined in the configuration
	and utilized by the Sagemaker service
	
#### Unload Model

	api.pelion_unload_model('model-name')
	
	This call unloads the loaded model referenced by the name 'model-name'
	
#### Reload Model

	api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
	
	This call is a convenience method for simply performing an "unload" followed by
	a "load" of a given model using the methods above. 
	
#### Predict

	api.pelion_predict(
	          'model-name',
	          's3:///input.data', 
	          's3:///prediction_result.data'
	          )
	
	This call invokes the model prediction using the specified input.data file that is
	configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
	result from the prediction will be stored in a file that will be saved to the same
	directory in the S3 bucket. 
	
	In addition to S3 bucket support, you can locally reference input/output requirements
	using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
	on the Pelion Edge Gateway will contain the specified files. 
	
#### Last Command Result

	api.pelion_last_cmd_result()
	
	This call returns the last invocation/call results. In cases where predictions take
	a long time to complete, this call may be used in a polling situation to determine
	when the prediction operation has completed. 





%package -n python3-pelion-sagemaker-controller
Summary:	AWS Sagemaker Controller notebook/client API for Pelion Edge Gateways
Provides:	python-pelion-sagemaker-controller
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pelion-sagemaker-controller
## Sagemaker Edge Agent Controller client API for Pelion Edge 

#### PyPi:  [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)

This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.

### Controller API Instance Creation

To create an instance of this API:
	
	# Required import
	from pelion_sagemaker_controller import pelion_sagemaker_controller
	
	#
	# Invoke constructor with Pelion API Key, Pelion GW Device ID
	# You can also optionally specify the Pelion API endpoint you want to use
	#
	api = pelion_sagemaker_controller.ControllerAPI(
			api_key='<ak_xxxx>', 
			device_id='<pelion_gw_device_id>', 
			api_endpoint='api.us-east-1.mbedcloud.com'
			)
		
		
### Supported Commands

The following commands are supported by this API:

#### Get Configuration

	api.pelion_get_config()
	
	This call returns a JSON with the current Edge Device representing the 
	Sagemaker service's configuration
	
#### Set Configuration

	api.pelion_set_config({'foo':'bar'})
	
	This call updates or adds key/values to the current Edge Device's configuration
	
#### List Models

	api.pelion_list_models()
	
	This call returns a JSON outlining all of the loaded models
	
#### Load Model

	api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
	
	This call loads up the requested Sagemaker-compiled model whose compiled 
	contents are located within the S3 bucket defined in the configuration
	and utilized by the Sagemaker service
	
#### Unload Model

	api.pelion_unload_model('model-name')
	
	This call unloads the loaded model referenced by the name 'model-name'
	
#### Reload Model

	api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
	
	This call is a convenience method for simply performing an "unload" followed by
	a "load" of a given model using the methods above. 
	
#### Predict

	api.pelion_predict(
	          'model-name',
	          's3:///input.data', 
	          's3:///prediction_result.data'
	          )
	
	This call invokes the model prediction using the specified input.data file that is
	configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
	result from the prediction will be stored in a file that will be saved to the same
	directory in the S3 bucket. 
	
	In addition to S3 bucket support, you can locally reference input/output requirements
	using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
	on the Pelion Edge Gateway will contain the specified files. 
	
#### Last Command Result

	api.pelion_last_cmd_result()
	
	This call returns the last invocation/call results. In cases where predictions take
	a long time to complete, this call may be used in a polling situation to determine
	when the prediction operation has completed. 





%package help
Summary:	Development documents and examples for pelion-sagemaker-controller
Provides:	python3-pelion-sagemaker-controller-doc
%description help
## Sagemaker Edge Agent Controller client API for Pelion Edge 

#### PyPi:  [https://pypi.org/project/pelion\_sagemaker\_controller/](https://pypi.org/project/pelion\_sagemaker\_controller/)

This python package simplifies the Data Scientist's job of accessing, via a Sagemaker Jupyter Notebook, the Sagemaker Edge Agent running on their Pelion Edge enabled gateway.

### Controller API Instance Creation

To create an instance of this API:
	
	# Required import
	from pelion_sagemaker_controller import pelion_sagemaker_controller
	
	#
	# Invoke constructor with Pelion API Key, Pelion GW Device ID
	# You can also optionally specify the Pelion API endpoint you want to use
	#
	api = pelion_sagemaker_controller.ControllerAPI(
			api_key='<ak_xxxx>', 
			device_id='<pelion_gw_device_id>', 
			api_endpoint='api.us-east-1.mbedcloud.com'
			)
		
		
### Supported Commands

The following commands are supported by this API:

#### Get Configuration

	api.pelion_get_config()
	
	This call returns a JSON with the current Edge Device representing the 
	Sagemaker service's configuration
	
#### Set Configuration

	api.pelion_set_config({'foo':'bar'})
	
	This call updates or adds key/values to the current Edge Device's configuration
	
#### List Models

	api.pelion_list_models()
	
	This call returns a JSON outlining all of the loaded models
	
#### Load Model

	api.pelion_load_model('model-name','compiled-model-x.y.tar.gz')
	
	This call loads up the requested Sagemaker-compiled model whose compiled 
	contents are located within the S3 bucket defined in the configuration
	and utilized by the Sagemaker service
	
#### Unload Model

	api.pelion_unload_model('model-name')
	
	This call unloads the loaded model referenced by the name 'model-name'
	
#### Reload Model

	api.pelion_reload_model('model-name','compiled-model-x.y.tar.gz')
	
	This call is a convenience method for simply performing an "unload" followed by
	a "load" of a given model using the methods above. 
	
#### Predict

	api.pelion_predict(
	          'model-name',
	          's3:///input.data', 
	          's3:///prediction_result.data'
	          )
	
	This call invokes the model prediction using the specified input.data file that is
	configured to be pulled from the Sagemaker S3 bucket (per configuration). The output
	result from the prediction will be stored in a file that will be saved to the same
	directory in the S3 bucket. 
	
	In addition to S3 bucket support, you can locally reference input/output requirements
	using the "file:///" protocol - in this case the Sagemaker Edge Agent working directory
	on the Pelion Edge Gateway will contain the specified files. 
	
#### Last Command Result

	api.pelion_last_cmd_result()
	
	This call returns the last invocation/call results. In cases where predictions take
	a long time to complete, this call may be used in a polling situation to determine
	when the prediction operation has completed. 





%prep
%autosetup -n pelion-sagemaker-controller-0.1.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pelion-sagemaker-controller -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1
- Package Spec generated