blob: f913c3fbf2a764e3b733d17f6f1fd91d81a3fdaa (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
%global _empty_manifest_terminate_build 0
Name: python-PermutationImportance
Version: 1.2.1.8
Release: 1
Summary: Important variables determined through data-based variable importance methods
License: MIT
URL: https://github.com/gelijergensen/PermutationImportance
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/44/78/83c67e1d2f88808904762e3521aecdfe9bfd08505fa9b1f2629a1c7b6e32/PermutationImportance-1.2.1.8.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-scikit-learn
%description
# <span class="permutationimportancetitle">PermutationImportance</span>
[](https://travis-ci.com/gelijergensen/PermutationImportance)
[](https://permutationimportance.readthedocs.io/en/latest/?badge=latest)

Welcome to the PermutationImportance library!
PermutationImportance is a Python package for Python 2.7 and 3.6+ which provides
several methods for computing data-based predictor importance. The methods
implemented are model-agnostic and can be used for any machine learning model in
many stages of development. The complete documentation can be found at our
[Read The Docs](https://permutationimportance.readthedocs.io/en/latest/).
## Version History
- 1.2.1.8: Shuffled pandas dataframes now retain the proper row indexing
- 1.2.1.7: Fixed a bug where pandas dataframes were being unshuffled when
concatenated
- 1.2.1.5: Added documentation and examples and ensured compatibility with
Python 3.5+
- 1.2.1.4: Original scores are now also bootstrapped to match the other results
- 1.2.1.3: Corrected an issue with multithreading deadlock when returned scores
were too large
- 1.2.1.1: Provided object to assist in constructing scoring strategies
- Also added two new strategies with bootstrapping support
- 1.2.1.0: Metrics can now accept kwargs and support bootstrapping
- 1.2.0.0: Added support for Sequential Selection and completely revised backend
for proper abstraction and extension
- Return object now keeps track of `(context, result)` pairs
- `abstract_variable_importance` enables implementation of custom variable
importance methods
- Backend is now correctly multithreaded (when specified) and is
OS-independent
- 1.1.0.0: Revised return object of Permutation Importance to support easy
retrieval of Breiman- and Lakshmanan-style importances
- 1.0.0.0: Published with `pip` support!
%package -n python3-PermutationImportance
Summary: Important variables determined through data-based variable importance methods
Provides: python-PermutationImportance
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-PermutationImportance
# <span class="permutationimportancetitle">PermutationImportance</span>
[](https://travis-ci.com/gelijergensen/PermutationImportance)
[](https://permutationimportance.readthedocs.io/en/latest/?badge=latest)

Welcome to the PermutationImportance library!
PermutationImportance is a Python package for Python 2.7 and 3.6+ which provides
several methods for computing data-based predictor importance. The methods
implemented are model-agnostic and can be used for any machine learning model in
many stages of development. The complete documentation can be found at our
[Read The Docs](https://permutationimportance.readthedocs.io/en/latest/).
## Version History
- 1.2.1.8: Shuffled pandas dataframes now retain the proper row indexing
- 1.2.1.7: Fixed a bug where pandas dataframes were being unshuffled when
concatenated
- 1.2.1.5: Added documentation and examples and ensured compatibility with
Python 3.5+
- 1.2.1.4: Original scores are now also bootstrapped to match the other results
- 1.2.1.3: Corrected an issue with multithreading deadlock when returned scores
were too large
- 1.2.1.1: Provided object to assist in constructing scoring strategies
- Also added two new strategies with bootstrapping support
- 1.2.1.0: Metrics can now accept kwargs and support bootstrapping
- 1.2.0.0: Added support for Sequential Selection and completely revised backend
for proper abstraction and extension
- Return object now keeps track of `(context, result)` pairs
- `abstract_variable_importance` enables implementation of custom variable
importance methods
- Backend is now correctly multithreaded (when specified) and is
OS-independent
- 1.1.0.0: Revised return object of Permutation Importance to support easy
retrieval of Breiman- and Lakshmanan-style importances
- 1.0.0.0: Published with `pip` support!
%package help
Summary: Development documents and examples for PermutationImportance
Provides: python3-PermutationImportance-doc
%description help
# <span class="permutationimportancetitle">PermutationImportance</span>
[](https://travis-ci.com/gelijergensen/PermutationImportance)
[](https://permutationimportance.readthedocs.io/en/latest/?badge=latest)

Welcome to the PermutationImportance library!
PermutationImportance is a Python package for Python 2.7 and 3.6+ which provides
several methods for computing data-based predictor importance. The methods
implemented are model-agnostic and can be used for any machine learning model in
many stages of development. The complete documentation can be found at our
[Read The Docs](https://permutationimportance.readthedocs.io/en/latest/).
## Version History
- 1.2.1.8: Shuffled pandas dataframes now retain the proper row indexing
- 1.2.1.7: Fixed a bug where pandas dataframes were being unshuffled when
concatenated
- 1.2.1.5: Added documentation and examples and ensured compatibility with
Python 3.5+
- 1.2.1.4: Original scores are now also bootstrapped to match the other results
- 1.2.1.3: Corrected an issue with multithreading deadlock when returned scores
were too large
- 1.2.1.1: Provided object to assist in constructing scoring strategies
- Also added two new strategies with bootstrapping support
- 1.2.1.0: Metrics can now accept kwargs and support bootstrapping
- 1.2.0.0: Added support for Sequential Selection and completely revised backend
for proper abstraction and extension
- Return object now keeps track of `(context, result)` pairs
- `abstract_variable_importance` enables implementation of custom variable
importance methods
- Backend is now correctly multithreaded (when specified) and is
OS-independent
- 1.1.0.0: Revised return object of Permutation Importance to support easy
retrieval of Breiman- and Lakshmanan-style importances
- 1.0.0.0: Published with `pip` support!
%prep
%autosetup -n PermutationImportance-1.2.1.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-PermutationImportance -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.1.8-1
- Package Spec generated
|