summaryrefslogtreecommitdiff
path: root/python-pgbm.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-pgbm.spec')
-rw-r--r--python-pgbm.spec236
1 files changed, 236 insertions, 0 deletions
diff --git a/python-pgbm.spec b/python-pgbm.spec
new file mode 100644
index 0000000..b1a86a9
--- /dev/null
+++ b/python-pgbm.spec
@@ -0,0 +1,236 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pgbm
+Version: 2.1.1
+Release: 1
+Summary: Probabilistic Gradient Boosting Machines
+License: Apache Software License
+URL: https://github.com/elephaint/pgbm
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0f/8e/007bbcb8e0bc4bab75bd6e4bc47f51b35de321e19ab76dbd8b638ac62b8f/pgbm-2.1.1.tar.gz
+
+Requires: python3-scikit-learn
+Requires: python3-ninja
+Requires: python3-numba
+
+%description
+# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
+[![PyPi version](https://img.shields.io/pypi/v/pgbm)](https://pypi.org/project/pgbm/)
+[![Python version](https://img.shields.io/pypi/pyversions/pgbm)](https://docs.conda.io/en/latest/miniconda.html)
+[![GitHub license](https://img.shields.io/pypi/l/pgbm)](https://github.com/elephaint/pgbm/blob/main/LICENSE)
+
+_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
+* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
+* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
+* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
+* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
+* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
+* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
+
+It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
+
+For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
+
+Below a simple example to generate 1000 estimates for each of our test points:
+```
+from pgbm.sklearn import HistGradientBoostingRegressor
+from sklearn.model_selection import train_test_split
+from sklearn.datasets import fetch_california_housing
+X, y = fetch_california_housing(return_X_y=True)
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
+model = HistGradientBoostingRegressor().fit(X_train, y_train)
+yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
+yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
+```
+
+See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
+
+### Installation ###
+
+See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
+
+### Support ###
+In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
+
+* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
+* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
+
+In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
+
+### Reference ###
+[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
+
+The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
+
+### License ###
+This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
+
+### Acknowledgements ###
+This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
+
+
+%package -n python3-pgbm
+Summary: Probabilistic Gradient Boosting Machines
+Provides: python-pgbm
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-pgbm
+# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
+[![PyPi version](https://img.shields.io/pypi/v/pgbm)](https://pypi.org/project/pgbm/)
+[![Python version](https://img.shields.io/pypi/pyversions/pgbm)](https://docs.conda.io/en/latest/miniconda.html)
+[![GitHub license](https://img.shields.io/pypi/l/pgbm)](https://github.com/elephaint/pgbm/blob/main/LICENSE)
+
+_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
+* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
+* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
+* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
+* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
+* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
+* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
+
+It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
+
+For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
+
+Below a simple example to generate 1000 estimates for each of our test points:
+```
+from pgbm.sklearn import HistGradientBoostingRegressor
+from sklearn.model_selection import train_test_split
+from sklearn.datasets import fetch_california_housing
+X, y = fetch_california_housing(return_X_y=True)
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
+model = HistGradientBoostingRegressor().fit(X_train, y_train)
+yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
+yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
+```
+
+See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
+
+### Installation ###
+
+See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
+
+### Support ###
+In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
+
+* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
+* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
+
+In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
+
+### Reference ###
+[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
+
+The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
+
+### License ###
+This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
+
+### Acknowledgements ###
+This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
+
+
+%package help
+Summary: Development documents and examples for pgbm
+Provides: python3-pgbm-doc
+%description help
+# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
+[![PyPi version](https://img.shields.io/pypi/v/pgbm)](https://pypi.org/project/pgbm/)
+[![Python version](https://img.shields.io/pypi/pyversions/pgbm)](https://docs.conda.io/en/latest/miniconda.html)
+[![GitHub license](https://img.shields.io/pypi/l/pgbm)](https://github.com/elephaint/pgbm/blob/main/LICENSE)
+
+_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
+* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
+* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
+* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
+* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
+* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
+* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
+
+It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
+
+For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
+
+Below a simple example to generate 1000 estimates for each of our test points:
+```
+from pgbm.sklearn import HistGradientBoostingRegressor
+from sklearn.model_selection import train_test_split
+from sklearn.datasets import fetch_california_housing
+X, y = fetch_california_housing(return_X_y=True)
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
+model = HistGradientBoostingRegressor().fit(X_train, y_train)
+yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
+yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
+```
+
+See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
+
+### Installation ###
+
+See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
+
+### Support ###
+In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
+
+* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
+* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
+
+In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
+
+### Reference ###
+[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
+
+The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
+
+### License ###
+This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
+
+### Acknowledgements ###
+This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
+
+
+%prep
+%autosetup -n pgbm-2.1.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pgbm -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.1-1
+- Package Spec generated