1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
%global _empty_manifest_terminate_build 0
Name: python-pgbm
Version: 2.1.1
Release: 1
Summary: Probabilistic Gradient Boosting Machines
License: Apache Software License
URL: https://github.com/elephaint/pgbm
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0f/8e/007bbcb8e0bc4bab75bd6e4bc47f51b35de321e19ab76dbd8b638ac62b8f/pgbm-2.1.1.tar.gz
Requires: python3-scikit-learn
Requires: python3-ninja
Requires: python3-numba
%description
# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
[](https://pypi.org/project/pgbm/)
[](https://docs.conda.io/en/latest/miniconda.html)
[](https://github.com/elephaint/pgbm/blob/main/LICENSE)
_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
Below a simple example to generate 1000 estimates for each of our test points:
```
from pgbm.sklearn import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
model = HistGradientBoostingRegressor().fit(X_train, y_train)
yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
```
See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
### Installation ###
See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
### Support ###
In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
### Reference ###
[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
### License ###
This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
### Acknowledgements ###
This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
%package -n python3-pgbm
Summary: Probabilistic Gradient Boosting Machines
Provides: python-pgbm
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-pgbm
# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
[](https://pypi.org/project/pgbm/)
[](https://docs.conda.io/en/latest/miniconda.html)
[](https://github.com/elephaint/pgbm/blob/main/LICENSE)
_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
Below a simple example to generate 1000 estimates for each of our test points:
```
from pgbm.sklearn import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
model = HistGradientBoostingRegressor().fit(X_train, y_train)
yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
```
See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
### Installation ###
See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
### Support ###
In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
### Reference ###
[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
### License ###
This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
### Acknowledgements ###
This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
%package help
Summary: Development documents and examples for pgbm
Provides: python3-pgbm-doc
%description help
# PGBM <img src="https://icai.ai/wp-content/uploads/2020/01/AIRLabAmsterdam-10-6-gecomprimeerd-transparant.png" width="300" alt="Airlab Amsterdam" align="right"> #
[](https://pypi.org/project/pgbm/)
[](https://docs.conda.io/en/latest/miniconda.html)
[](https://github.com/elephaint/pgbm/blob/main/LICENSE)
_Probabilistic Gradient Boosting Machines_ (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:
* Probabilistic regression estimates instead of only point estimates. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example01_housing_cpu.py))
* Auto-differentiation of custom loss functions. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example08_housing_autodiff.py), [example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example10_covidhospitaladmissions.py))
* Native GPU-acceleration. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example02_housing_gpu.py))
* Distributed training for CPU and GPU, across multiple nodes. ([examples](https://github.com/elephaint/pgbm/blob/main/examples/torch_dist/))
* Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. ([example](https://github.com/elephaint/pgbm/blob/main/examples/torch/example07_optimizeddistribution.py))
* Full integration with scikit-learn through a fork of HistGradientBoostingRegressor ([examples](https://github.com/elephaint/pgbm/tree/main/examples/sklearn))
It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting.
For more details, [read the docs](https://pgbm.readthedocs.io/en/latest/index.html) or [our paper](https://arxiv.org/abs/2106.01682) or check out the [examples](https://github.com/elephaint/pgbm/tree/main/examples).
Below a simple example to generate 1000 estimates for each of our test points:
```
from pgbm.sklearn import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
model = HistGradientBoostingRegressor().fit(X_train, y_train)
yhat_test, yhat_test_std = model.predict(X_test, return_std=True)
yhat_dist = model.sample(yhat_test, yhat_test_std, n_estimates=1000)
```
See also [this example](https://github.com/elephaint/pgbm/blob/main/examples/sklearn/example14_probregression.py) where we compare PGBM to standard gradient boosting quantile regression methods, demonstrating that we can achieve comparable or better probabilistic performance whilst only training a single model.
### Installation ###
See [Installation](https://pgbm.readthedocs.io/en/latest/installation.html) section in our [docs](https://pgbm.readthedocs.io/en/latest/index.html).
### Support ###
In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement).
* Read the docs for an overview of [hyperparameters](https://pgbm.readthedocs.io/en/latest/parameters.html) and a [function reference](https://pgbm.readthedocs.io/en/latest/function_reference.html).
* See the [examples](https://github.com/elephaint/pgbm/tree/main/examples) folder for examples.
In case further support is required, [open an issue](https://github.com/elephaint/pgbm/issues).
### Reference ###
[Olivier Sprangers](mailto:o.r.sprangers@uva.nl), Sebastian Schelter, Maarten de Rijke. [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://arxiv.org/abs/2106.01682). Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ([KDD 21](https://www.kdd.org/kdd2021/)), August 14–18, 2021, Virtual Event, Singapore.
The experiments from our paper can be replicated by running the scripts in the [experiments](https://github.com/elephaint/pgbm/tree/main/paper/experiments) folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the [datasets](https://github.com/elephaint/pgbm/tree/main/paper/datasets) folder (Higgs) and to datasets/m5 (m5).
### License ###
This project is licensed under the terms of the [Apache 2.0 license](https://github.com/elephaint/pgbm/blob/main/LICENSE).
### Acknowledgements ###
This project was developed by [Airlab Amsterdam](https://icai.ai/airlab/).
%prep
%autosetup -n pgbm-2.1.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pgbm -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.1-1
- Package Spec generated
|