1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
%global _empty_manifest_terminate_build 0
Name: python-piicatcher
Version: 0.20.2
Release: 1
Summary: Find PII data in databases
License: Apache 2.0
URL: https://tokern.io/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c6/4c/c4557ff1c8d7fc52a0706ce71154f2e84b428688c5b48f323b24aa347375/piicatcher-0.20.2.tar.gz
BuildArch: noarch
Requires: python3-pyyaml
Requires: python3-click
Requires: python3-json-logger
Requires: python3-commonregex
Requires: python3-dbcat
Requires: python3-typer
Requires: python3-tabulate
Requires: python3-dataclasses
Requires: python3-great-expectations
Requires: python3-acryl-datahub
Requires: python3-tqdm
Requires: python3-catalogue
%description
[](https://github.com/tokern/piicatcher/actions/workflows/ci.yml)
[](https://pypi.python.org/pypi/piicatcher)
[](https://pypi.org/project/piicatcher/)
[](https://pypi.org/project/piicatcher/)
[](https://hub.docker.com/r/tokern/piicatcher)
# PII Catcher for Databases and Data Warehouses
## Overview
PIICatcher is a scanner for PII and PHI information. It finds PII data in your databases and file systems
and tracks critical data. PIICatcher uses two techniques to detect PII:
* Match regular expressions with column names
* Match regular expressions and using NLP libraries to match sample data in columns.
Read more in the [blog post](https://tokern.io/blog/scan-pii-data-warehouse/) on both these strategies.
PIICatcher is *batteries-included* with a growing set of plugins to scan column metadata as well as metadata.
For example, [piicatcher_spacy](https://github.com/tokern/piicatcher_spacy) uses [Spacy](https://spacy.io) to detect
PII in column data.
PIICatcher supports incremental scans and will only scan new or not-yet scanned columns. Incremental scans allow easy
scheduling of scans. It also provides powerful options to include or exclude schema and tables to manage compute resources.
There are ingestion functions for both [Datahub](https://datahubproject.io) and [Amundsen](https://amundsen.io) which will tag columns
and tables with PII and the type of PII tags.

## Resources
* [AWS Glue & Lake Formation Privilege Analyzer](https://tokern.io/blog/lake-glue-access-analyzer/) for an example of how piicatcher is used in production.
* [Two strategies to scan data warehouses](https://tokern.io/blog/scan-pii-data-warehouse/)
## Quick Start
PIICatcher is available as a docker image or command-line application.
### Installation
Docker:
alias piicatcher='docker run -v ${HOME}/.config/tokern:/config -u $(id -u ${USER}):$(id -g ${USER}) -it --add-host=host.docker.internal:host-gateway tokern/piicatcher:latest'
Pypi:
# Install development libraries for compiling dependencies.
# On Amazon Linux
sudo yum install mysql-devel gcc gcc-devel python-devel
python3 -m venv .env
source .env/bin/activate
pip install piicatcher
# Install Spacy plugin
pip install piicatcher_spacy
### Command Line Usage
# add a sqlite source
piicatcher catalog add_sqlite --name sqldb --path '/db/sqldb'
# run piicatcher on a sqlite db and print report to console
piicatcher detect --source-name sqldb
╭─────────────┬─────────────┬─────────────┬─────────────╮
│ schema │ table │ column │ has_pii │
├─────────────┼─────────────┼─────────────┼─────────────┤
│ main │ full_pii │ a │ 1 │
│ main │ full_pii │ b │ 1 │
│ main │ no_pii │ a │ 0 │
│ main │ no_pii │ b │ 0 │
│ main │ partial_pii │ a │ 1 │
│ main │ partial_pii │ b │ 0 │
╰─────────────┴─────────────┴─────────────┴─────────────╯
### API Usage
```python3
from dbcat.api import open_catalog, add_postgresql_source
from piicatcher.api import scan_database
# PIICatcher uses a catalog to store its state.
# The easiest option is to use a sqlite memory database.
# For production usage check, https://tokern.io/docs/data-catalog
catalog = open_catalog(app_dir='/tmp/.config/piicatcher', path=':memory:', secret='my_secret')
with catalog.managed_session:
# Add a postgresql source
source = add_postgresql_source(catalog=catalog, name="pg_db", uri="127.0.0.1", username="piiuser",
password="p11secret", database="piidb")
output = scan_database(catalog=catalog, source=source)
print(output)
# Example Output
[['public', 'sample', 'gender', 'PiiTypes.GENDER'],
['public', 'sample', 'maiden_name', 'PiiTypes.PERSON'],
['public', 'sample', 'lname', 'PiiTypes.PERSON'],
['public', 'sample', 'fname', 'PiiTypes.PERSON'],
['public', 'sample', 'address', 'PiiTypes.ADDRESS'],
['public', 'sample', 'city', 'PiiTypes.ADDRESS'],
['public', 'sample', 'state', 'PiiTypes.ADDRESS'],
['public', 'sample', 'email', 'PiiTypes.EMAIL']]
```
## Plugins
PIICatcher can be extended by creating new detectors. PIICatcher supports two scanning techniques:
* Metadata
* Data
Plugins can be created for either of these two techniques. Plugins are then registered using an API or using
[Python Entry Points](https://packaging.python.org/en/latest/specifications/entry-points/).
To create a new detector, simply create a new class that inherits from [`MetadataDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py)
or [`DatumDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py).
In the new class, define a function `detect` that will return a [`PIIType`](https://github.com/tokern/dbcat/blob/main/dbcat/catalog/pii_types.py)
If you are detecting a new PII type, then you can define a new class that inherits from PIIType.
For detailed documentation, check [piicatcher plugin docs](https://tokern.io/docs/piicatcher/detectors/plugins).
## Supported Databases
PIICatcher supports the following databases:
1. **Sqlite3** v3.24.0 or greater
2. **MySQL** 5.6 or greater
3. **PostgreSQL** 9.4 or greater
4. **AWS Redshift**
5. **AWS Athena**
6. **Snowflake**
## Documentation
For advanced usage refer documentation [PIICatcher Documentation](https://tokern.io/docs/piicatcher).
## Survey
Please take this [survey](https://forms.gle/Ns6QSNvfj3Pr2s9s6) if you are a user or considering using PIICatcher.
The responses will help to prioritize improvements to the project.
## Contributing
For Contribution guidelines, [PIICatcher Developer documentation](https://tokern.io/docs/piicatcher/development).
%package -n python3-piicatcher
Summary: Find PII data in databases
Provides: python-piicatcher
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-piicatcher
[](https://github.com/tokern/piicatcher/actions/workflows/ci.yml)
[](https://pypi.python.org/pypi/piicatcher)
[](https://pypi.org/project/piicatcher/)
[](https://pypi.org/project/piicatcher/)
[](https://hub.docker.com/r/tokern/piicatcher)
# PII Catcher for Databases and Data Warehouses
## Overview
PIICatcher is a scanner for PII and PHI information. It finds PII data in your databases and file systems
and tracks critical data. PIICatcher uses two techniques to detect PII:
* Match regular expressions with column names
* Match regular expressions and using NLP libraries to match sample data in columns.
Read more in the [blog post](https://tokern.io/blog/scan-pii-data-warehouse/) on both these strategies.
PIICatcher is *batteries-included* with a growing set of plugins to scan column metadata as well as metadata.
For example, [piicatcher_spacy](https://github.com/tokern/piicatcher_spacy) uses [Spacy](https://spacy.io) to detect
PII in column data.
PIICatcher supports incremental scans and will only scan new or not-yet scanned columns. Incremental scans allow easy
scheduling of scans. It also provides powerful options to include or exclude schema and tables to manage compute resources.
There are ingestion functions for both [Datahub](https://datahubproject.io) and [Amundsen](https://amundsen.io) which will tag columns
and tables with PII and the type of PII tags.

## Resources
* [AWS Glue & Lake Formation Privilege Analyzer](https://tokern.io/blog/lake-glue-access-analyzer/) for an example of how piicatcher is used in production.
* [Two strategies to scan data warehouses](https://tokern.io/blog/scan-pii-data-warehouse/)
## Quick Start
PIICatcher is available as a docker image or command-line application.
### Installation
Docker:
alias piicatcher='docker run -v ${HOME}/.config/tokern:/config -u $(id -u ${USER}):$(id -g ${USER}) -it --add-host=host.docker.internal:host-gateway tokern/piicatcher:latest'
Pypi:
# Install development libraries for compiling dependencies.
# On Amazon Linux
sudo yum install mysql-devel gcc gcc-devel python-devel
python3 -m venv .env
source .env/bin/activate
pip install piicatcher
# Install Spacy plugin
pip install piicatcher_spacy
### Command Line Usage
# add a sqlite source
piicatcher catalog add_sqlite --name sqldb --path '/db/sqldb'
# run piicatcher on a sqlite db and print report to console
piicatcher detect --source-name sqldb
╭─────────────┬─────────────┬─────────────┬─────────────╮
│ schema │ table │ column │ has_pii │
├─────────────┼─────────────┼─────────────┼─────────────┤
│ main │ full_pii │ a │ 1 │
│ main │ full_pii │ b │ 1 │
│ main │ no_pii │ a │ 0 │
│ main │ no_pii │ b │ 0 │
│ main │ partial_pii │ a │ 1 │
│ main │ partial_pii │ b │ 0 │
╰─────────────┴─────────────┴─────────────┴─────────────╯
### API Usage
```python3
from dbcat.api import open_catalog, add_postgresql_source
from piicatcher.api import scan_database
# PIICatcher uses a catalog to store its state.
# The easiest option is to use a sqlite memory database.
# For production usage check, https://tokern.io/docs/data-catalog
catalog = open_catalog(app_dir='/tmp/.config/piicatcher', path=':memory:', secret='my_secret')
with catalog.managed_session:
# Add a postgresql source
source = add_postgresql_source(catalog=catalog, name="pg_db", uri="127.0.0.1", username="piiuser",
password="p11secret", database="piidb")
output = scan_database(catalog=catalog, source=source)
print(output)
# Example Output
[['public', 'sample', 'gender', 'PiiTypes.GENDER'],
['public', 'sample', 'maiden_name', 'PiiTypes.PERSON'],
['public', 'sample', 'lname', 'PiiTypes.PERSON'],
['public', 'sample', 'fname', 'PiiTypes.PERSON'],
['public', 'sample', 'address', 'PiiTypes.ADDRESS'],
['public', 'sample', 'city', 'PiiTypes.ADDRESS'],
['public', 'sample', 'state', 'PiiTypes.ADDRESS'],
['public', 'sample', 'email', 'PiiTypes.EMAIL']]
```
## Plugins
PIICatcher can be extended by creating new detectors. PIICatcher supports two scanning techniques:
* Metadata
* Data
Plugins can be created for either of these two techniques. Plugins are then registered using an API or using
[Python Entry Points](https://packaging.python.org/en/latest/specifications/entry-points/).
To create a new detector, simply create a new class that inherits from [`MetadataDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py)
or [`DatumDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py).
In the new class, define a function `detect` that will return a [`PIIType`](https://github.com/tokern/dbcat/blob/main/dbcat/catalog/pii_types.py)
If you are detecting a new PII type, then you can define a new class that inherits from PIIType.
For detailed documentation, check [piicatcher plugin docs](https://tokern.io/docs/piicatcher/detectors/plugins).
## Supported Databases
PIICatcher supports the following databases:
1. **Sqlite3** v3.24.0 or greater
2. **MySQL** 5.6 or greater
3. **PostgreSQL** 9.4 or greater
4. **AWS Redshift**
5. **AWS Athena**
6. **Snowflake**
## Documentation
For advanced usage refer documentation [PIICatcher Documentation](https://tokern.io/docs/piicatcher).
## Survey
Please take this [survey](https://forms.gle/Ns6QSNvfj3Pr2s9s6) if you are a user or considering using PIICatcher.
The responses will help to prioritize improvements to the project.
## Contributing
For Contribution guidelines, [PIICatcher Developer documentation](https://tokern.io/docs/piicatcher/development).
%package help
Summary: Development documents and examples for piicatcher
Provides: python3-piicatcher-doc
%description help
[](https://github.com/tokern/piicatcher/actions/workflows/ci.yml)
[](https://pypi.python.org/pypi/piicatcher)
[](https://pypi.org/project/piicatcher/)
[](https://pypi.org/project/piicatcher/)
[](https://hub.docker.com/r/tokern/piicatcher)
# PII Catcher for Databases and Data Warehouses
## Overview
PIICatcher is a scanner for PII and PHI information. It finds PII data in your databases and file systems
and tracks critical data. PIICatcher uses two techniques to detect PII:
* Match regular expressions with column names
* Match regular expressions and using NLP libraries to match sample data in columns.
Read more in the [blog post](https://tokern.io/blog/scan-pii-data-warehouse/) on both these strategies.
PIICatcher is *batteries-included* with a growing set of plugins to scan column metadata as well as metadata.
For example, [piicatcher_spacy](https://github.com/tokern/piicatcher_spacy) uses [Spacy](https://spacy.io) to detect
PII in column data.
PIICatcher supports incremental scans and will only scan new or not-yet scanned columns. Incremental scans allow easy
scheduling of scans. It also provides powerful options to include or exclude schema and tables to manage compute resources.
There are ingestion functions for both [Datahub](https://datahubproject.io) and [Amundsen](https://amundsen.io) which will tag columns
and tables with PII and the type of PII tags.

## Resources
* [AWS Glue & Lake Formation Privilege Analyzer](https://tokern.io/blog/lake-glue-access-analyzer/) for an example of how piicatcher is used in production.
* [Two strategies to scan data warehouses](https://tokern.io/blog/scan-pii-data-warehouse/)
## Quick Start
PIICatcher is available as a docker image or command-line application.
### Installation
Docker:
alias piicatcher='docker run -v ${HOME}/.config/tokern:/config -u $(id -u ${USER}):$(id -g ${USER}) -it --add-host=host.docker.internal:host-gateway tokern/piicatcher:latest'
Pypi:
# Install development libraries for compiling dependencies.
# On Amazon Linux
sudo yum install mysql-devel gcc gcc-devel python-devel
python3 -m venv .env
source .env/bin/activate
pip install piicatcher
# Install Spacy plugin
pip install piicatcher_spacy
### Command Line Usage
# add a sqlite source
piicatcher catalog add_sqlite --name sqldb --path '/db/sqldb'
# run piicatcher on a sqlite db and print report to console
piicatcher detect --source-name sqldb
╭─────────────┬─────────────┬─────────────┬─────────────╮
│ schema │ table │ column │ has_pii │
├─────────────┼─────────────┼─────────────┼─────────────┤
│ main │ full_pii │ a │ 1 │
│ main │ full_pii │ b │ 1 │
│ main │ no_pii │ a │ 0 │
│ main │ no_pii │ b │ 0 │
│ main │ partial_pii │ a │ 1 │
│ main │ partial_pii │ b │ 0 │
╰─────────────┴─────────────┴─────────────┴─────────────╯
### API Usage
```python3
from dbcat.api import open_catalog, add_postgresql_source
from piicatcher.api import scan_database
# PIICatcher uses a catalog to store its state.
# The easiest option is to use a sqlite memory database.
# For production usage check, https://tokern.io/docs/data-catalog
catalog = open_catalog(app_dir='/tmp/.config/piicatcher', path=':memory:', secret='my_secret')
with catalog.managed_session:
# Add a postgresql source
source = add_postgresql_source(catalog=catalog, name="pg_db", uri="127.0.0.1", username="piiuser",
password="p11secret", database="piidb")
output = scan_database(catalog=catalog, source=source)
print(output)
# Example Output
[['public', 'sample', 'gender', 'PiiTypes.GENDER'],
['public', 'sample', 'maiden_name', 'PiiTypes.PERSON'],
['public', 'sample', 'lname', 'PiiTypes.PERSON'],
['public', 'sample', 'fname', 'PiiTypes.PERSON'],
['public', 'sample', 'address', 'PiiTypes.ADDRESS'],
['public', 'sample', 'city', 'PiiTypes.ADDRESS'],
['public', 'sample', 'state', 'PiiTypes.ADDRESS'],
['public', 'sample', 'email', 'PiiTypes.EMAIL']]
```
## Plugins
PIICatcher can be extended by creating new detectors. PIICatcher supports two scanning techniques:
* Metadata
* Data
Plugins can be created for either of these two techniques. Plugins are then registered using an API or using
[Python Entry Points](https://packaging.python.org/en/latest/specifications/entry-points/).
To create a new detector, simply create a new class that inherits from [`MetadataDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py)
or [`DatumDetector`](https://github.com/tokern/piicatcher/blob/master/piicatcher/detectors.py).
In the new class, define a function `detect` that will return a [`PIIType`](https://github.com/tokern/dbcat/blob/main/dbcat/catalog/pii_types.py)
If you are detecting a new PII type, then you can define a new class that inherits from PIIType.
For detailed documentation, check [piicatcher plugin docs](https://tokern.io/docs/piicatcher/detectors/plugins).
## Supported Databases
PIICatcher supports the following databases:
1. **Sqlite3** v3.24.0 or greater
2. **MySQL** 5.6 or greater
3. **PostgreSQL** 9.4 or greater
4. **AWS Redshift**
5. **AWS Athena**
6. **Snowflake**
## Documentation
For advanced usage refer documentation [PIICatcher Documentation](https://tokern.io/docs/piicatcher).
## Survey
Please take this [survey](https://forms.gle/Ns6QSNvfj3Pr2s9s6) if you are a user or considering using PIICatcher.
The responses will help to prioritize improvements to the project.
## Contributing
For Contribution guidelines, [PIICatcher Developer documentation](https://tokern.io/docs/piicatcher/development).
%prep
%autosetup -n piicatcher-0.20.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-piicatcher -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.20.2-1
- Package Spec generated
|