summaryrefslogtreecommitdiff
path: root/python-pillaralgos.spec
blob: 418b63afb70abb0bd23e2989d7fa67bdfbaa4d3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
%global _empty_manifest_terminate_build 0
Name:		python-pillaralgos
Version:	1.0.20
Release:	1
Summary:	Algorithms for Pillar. Currently includes "mini" algorithms, nothing too sophisticated.
License:	GPL-3.0-or-later
URL:		https://pypi.org/project/pillaralgos/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/09/8e/3d8ca1a5428f62b388dfc7efca9b732653fd1b51f877e28d04c3564cb107/pillaralgos-1.0.20.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-numpy

%description
NOTE: This readme is just a quick reference. For more details include todo, near/medium/long term goals please see our GitHub page.

# Table of Contents
1. [Use](#use)
   1. [Input variables](#input-variables)
   2. [Output variables](#output-variables)
2. [Background](#background)
   1. [Algorithms](#algorithms)
   1. [Timeit Results](#timeit-results)
3. [Build and Publis](#build)
4. [Changelog](#changelog)

# Use

To use any of the algorithms just import as needed with `from pillaralgos import algo1`, and then `algo1(data, min_=2, save_json=False)`.

## Input variables

```
save_json: bool
    True if want to save results as json to exports folder
data: list
min_: int
    Approximate number of minutes each clip should be
sort_by: str
    For algo1 ONLY
    'rel': "number of chatters at timestamp"/"number of chatters at that hour"
    'abs': "number of chatters at timestamp"/"total number of chatters in stream"
goal: str
    For algo3_5 ONLY
    'num_words': sum of the number of words in each chat message
    'num_emo': sum of the number of emoticons in each chat message
    'num_words_emo': sum of the number of words + emoticons in each chat message
min_words:int
    For algo3_0 ONLY
    When filtering chunks to top users, at least how many words the top user should send
```

## Output variables

* All algorithms will return a `result_json`, list of dictionaries in the format of `{start:seconds, end:seconds}` where `seconds` is seconds elapsed since start of the stream. List is ordered from predicted best to worst timestamps.
* All algorithms can save the returned list as a .json if `save_json=True` is passed in.

# Background
Pillar is creating an innovative way to automatically select and splice clips from Twitch videos for streamers. This repo is focusing on the algorithm aspect. Three main algorithms are being tested.

## Algorithms

1. [Algorithm 1](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_1.ipynb): Find the best moments in clips based on where the most users participated. Most is defined as the *ratio of unique users* during a 2 min section to unique users for the entire session.
1. [Algorithm 2](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_2.ipynb) Find the best moments in clips based on when rate of messages per user peaked. This involves answering the question "at which 2 min segment do the most users send the most messages?". If users X, Y, and Z all send 60% of their messages at timestamp range delta, then that timestamp might qualify as a "best moment"
   1. __NOTE__: Currently answers the question "at which 2 min segment do users send the most messages fastest"
1. [Algorithm 3 (WIP)](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.ipynb) Weigh each user by their chat rate, account age, etc. Heavier users predicted to chat more often at "best moment" timestamps 
   1. __STATUS__: current weight determined by (`num_words_of_user`/`num_words_of_top_user`)
   1. [Algorithm 3.5](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.5.ipynb) Finds the best moments in clips based on most number of words/emojis/both used in chat

### Timeit results
Results as of `April 13, 2021 18:31 EST` run on `big_df` with 80841 rows, 10 columns.

| algo1  | algo2        | algo3_0 | algo3_5 |
|--------|--------------|---------|---------|
|2.2 sec | 1 min 23 sec |28.1 sec | 16.3 sec|

# Build
To build and publish this package we are using the [poetry](https://python-poetry.org/) python packager. It takes care of some background stuff that led to [mistakes in the past](https://github.com/pillargg/twitch_chat_analysis/issues/8).

Folder structure:
```
|-- dev_tools
    |-- pillaralgos_dev
        |-- __init__.py
        |-- dev_helpers.py # aws connection, file retrieval script
        |-- sanity_checks.py # placeholder
    |-- README.md 
    |-- pyproject.toml
|-- prod
    |-- pillaralgos  # <---- note that poetry didn't require an additional subfolder
        |-- helpers
            |-- __init__.py
            |-- data_handler.py
            |-- emoji_getter.py
        |-- __init__.py  # must include version number
        |-- algoXX.py  # all algorithms in separate files
        |-- brain.py
    |-- LICENSE
    |-- README.md
    |-- pyproject.toml  # must include version number
    |-- reinstall_pill.sh # quick script to uninstall local pillaralgos, build and install new one
```
To publish just run the `poetry publish --build` command after update version numbers as needed.

# Changelog

* New algorithms
* Algo3.6: rank timestamps by emoji:user ratio
* Algo4: rank timestamps by compound score from SentimentAnalyzer
* Unit testing for algo 3.6

%package -n python3-pillaralgos
Summary:	Algorithms for Pillar. Currently includes "mini" algorithms, nothing too sophisticated.
Provides:	python-pillaralgos
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pillaralgos
NOTE: This readme is just a quick reference. For more details include todo, near/medium/long term goals please see our GitHub page.

# Table of Contents
1. [Use](#use)
   1. [Input variables](#input-variables)
   2. [Output variables](#output-variables)
2. [Background](#background)
   1. [Algorithms](#algorithms)
   1. [Timeit Results](#timeit-results)
3. [Build and Publis](#build)
4. [Changelog](#changelog)

# Use

To use any of the algorithms just import as needed with `from pillaralgos import algo1`, and then `algo1(data, min_=2, save_json=False)`.

## Input variables

```
save_json: bool
    True if want to save results as json to exports folder
data: list
min_: int
    Approximate number of minutes each clip should be
sort_by: str
    For algo1 ONLY
    'rel': "number of chatters at timestamp"/"number of chatters at that hour"
    'abs': "number of chatters at timestamp"/"total number of chatters in stream"
goal: str
    For algo3_5 ONLY
    'num_words': sum of the number of words in each chat message
    'num_emo': sum of the number of emoticons in each chat message
    'num_words_emo': sum of the number of words + emoticons in each chat message
min_words:int
    For algo3_0 ONLY
    When filtering chunks to top users, at least how many words the top user should send
```

## Output variables

* All algorithms will return a `result_json`, list of dictionaries in the format of `{start:seconds, end:seconds}` where `seconds` is seconds elapsed since start of the stream. List is ordered from predicted best to worst timestamps.
* All algorithms can save the returned list as a .json if `save_json=True` is passed in.

# Background
Pillar is creating an innovative way to automatically select and splice clips from Twitch videos for streamers. This repo is focusing on the algorithm aspect. Three main algorithms are being tested.

## Algorithms

1. [Algorithm 1](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_1.ipynb): Find the best moments in clips based on where the most users participated. Most is defined as the *ratio of unique users* during a 2 min section to unique users for the entire session.
1. [Algorithm 2](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_2.ipynb) Find the best moments in clips based on when rate of messages per user peaked. This involves answering the question "at which 2 min segment do the most users send the most messages?". If users X, Y, and Z all send 60% of their messages at timestamp range delta, then that timestamp might qualify as a "best moment"
   1. __NOTE__: Currently answers the question "at which 2 min segment do users send the most messages fastest"
1. [Algorithm 3 (WIP)](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.ipynb) Weigh each user by their chat rate, account age, etc. Heavier users predicted to chat more often at "best moment" timestamps 
   1. __STATUS__: current weight determined by (`num_words_of_user`/`num_words_of_top_user`)
   1. [Algorithm 3.5](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.5.ipynb) Finds the best moments in clips based on most number of words/emojis/both used in chat

### Timeit results
Results as of `April 13, 2021 18:31 EST` run on `big_df` with 80841 rows, 10 columns.

| algo1  | algo2        | algo3_0 | algo3_5 |
|--------|--------------|---------|---------|
|2.2 sec | 1 min 23 sec |28.1 sec | 16.3 sec|

# Build
To build and publish this package we are using the [poetry](https://python-poetry.org/) python packager. It takes care of some background stuff that led to [mistakes in the past](https://github.com/pillargg/twitch_chat_analysis/issues/8).

Folder structure:
```
|-- dev_tools
    |-- pillaralgos_dev
        |-- __init__.py
        |-- dev_helpers.py # aws connection, file retrieval script
        |-- sanity_checks.py # placeholder
    |-- README.md 
    |-- pyproject.toml
|-- prod
    |-- pillaralgos  # <---- note that poetry didn't require an additional subfolder
        |-- helpers
            |-- __init__.py
            |-- data_handler.py
            |-- emoji_getter.py
        |-- __init__.py  # must include version number
        |-- algoXX.py  # all algorithms in separate files
        |-- brain.py
    |-- LICENSE
    |-- README.md
    |-- pyproject.toml  # must include version number
    |-- reinstall_pill.sh # quick script to uninstall local pillaralgos, build and install new one
```
To publish just run the `poetry publish --build` command after update version numbers as needed.

# Changelog

* New algorithms
* Algo3.6: rank timestamps by emoji:user ratio
* Algo4: rank timestamps by compound score from SentimentAnalyzer
* Unit testing for algo 3.6

%package help
Summary:	Development documents and examples for pillaralgos
Provides:	python3-pillaralgos-doc
%description help
NOTE: This readme is just a quick reference. For more details include todo, near/medium/long term goals please see our GitHub page.

# Table of Contents
1. [Use](#use)
   1. [Input variables](#input-variables)
   2. [Output variables](#output-variables)
2. [Background](#background)
   1. [Algorithms](#algorithms)
   1. [Timeit Results](#timeit-results)
3. [Build and Publis](#build)
4. [Changelog](#changelog)

# Use

To use any of the algorithms just import as needed with `from pillaralgos import algo1`, and then `algo1(data, min_=2, save_json=False)`.

## Input variables

```
save_json: bool
    True if want to save results as json to exports folder
data: list
min_: int
    Approximate number of minutes each clip should be
sort_by: str
    For algo1 ONLY
    'rel': "number of chatters at timestamp"/"number of chatters at that hour"
    'abs': "number of chatters at timestamp"/"total number of chatters in stream"
goal: str
    For algo3_5 ONLY
    'num_words': sum of the number of words in each chat message
    'num_emo': sum of the number of emoticons in each chat message
    'num_words_emo': sum of the number of words + emoticons in each chat message
min_words:int
    For algo3_0 ONLY
    When filtering chunks to top users, at least how many words the top user should send
```

## Output variables

* All algorithms will return a `result_json`, list of dictionaries in the format of `{start:seconds, end:seconds}` where `seconds` is seconds elapsed since start of the stream. List is ordered from predicted best to worst timestamps.
* All algorithms can save the returned list as a .json if `save_json=True` is passed in.

# Background
Pillar is creating an innovative way to automatically select and splice clips from Twitch videos for streamers. This repo is focusing on the algorithm aspect. Three main algorithms are being tested.

## Algorithms

1. [Algorithm 1](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_1.ipynb): Find the best moments in clips based on where the most users participated. Most is defined as the *ratio of unique users* during a 2 min section to unique users for the entire session.
1. [Algorithm 2](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_2.ipynb) Find the best moments in clips based on when rate of messages per user peaked. This involves answering the question "at which 2 min segment do the most users send the most messages?". If users X, Y, and Z all send 60% of their messages at timestamp range delta, then that timestamp might qualify as a "best moment"
   1. __NOTE__: Currently answers the question "at which 2 min segment do users send the most messages fastest"
1. [Algorithm 3 (WIP)](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.ipynb) Weigh each user by their chat rate, account age, etc. Heavier users predicted to chat more often at "best moment" timestamps 
   1. __STATUS__: current weight determined by (`num_words_of_user`/`num_words_of_top_user`)
   1. [Algorithm 3.5](https://github.com/pomkos/twitch_chat_analysis/blob/reorganize_repo/algorithm_3.5.ipynb) Finds the best moments in clips based on most number of words/emojis/both used in chat

### Timeit results
Results as of `April 13, 2021 18:31 EST` run on `big_df` with 80841 rows, 10 columns.

| algo1  | algo2        | algo3_0 | algo3_5 |
|--------|--------------|---------|---------|
|2.2 sec | 1 min 23 sec |28.1 sec | 16.3 sec|

# Build
To build and publish this package we are using the [poetry](https://python-poetry.org/) python packager. It takes care of some background stuff that led to [mistakes in the past](https://github.com/pillargg/twitch_chat_analysis/issues/8).

Folder structure:
```
|-- dev_tools
    |-- pillaralgos_dev
        |-- __init__.py
        |-- dev_helpers.py # aws connection, file retrieval script
        |-- sanity_checks.py # placeholder
    |-- README.md 
    |-- pyproject.toml
|-- prod
    |-- pillaralgos  # <---- note that poetry didn't require an additional subfolder
        |-- helpers
            |-- __init__.py
            |-- data_handler.py
            |-- emoji_getter.py
        |-- __init__.py  # must include version number
        |-- algoXX.py  # all algorithms in separate files
        |-- brain.py
    |-- LICENSE
    |-- README.md
    |-- pyproject.toml  # must include version number
    |-- reinstall_pill.sh # quick script to uninstall local pillaralgos, build and install new one
```
To publish just run the `poetry publish --build` command after update version numbers as needed.

# Changelog

* New algorithms
* Algo3.6: rank timestamps by emoji:user ratio
* Algo4: rank timestamps by compound score from SentimentAnalyzer
* Unit testing for algo 3.6

%prep
%autosetup -n pillaralgos-1.0.20

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pillaralgos -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.20-1
- Package Spec generated