summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-pkbar.spec364
-rw-r--r--sources1
3 files changed, 366 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..c12b72a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/pkbar-0.5.tar.gz
diff --git a/python-pkbar.spec b/python-pkbar.spec
new file mode 100644
index 0000000..4edd408
--- /dev/null
+++ b/python-pkbar.spec
@@ -0,0 +1,364 @@
+%global _empty_manifest_terminate_build 0
+Name: python-pkbar
+Version: 0.5
+Release: 1
+Summary: Keras Progress Bar for PyTorch
+License: Apache License 2.0
+URL: https://github.com/yueyericardo/pkbar
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/12/4d/c4210a0743ef62ddfa96b3b501c71a214718189f65df8a22f1eb37f256e3/pkbar-0.5.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+
+%description
+# pkbar
+![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)
+
+Keras style progressbar for pytorch (PK Bar)
+
+### 1. Show
+- `pkbar.Pbar` (progress bar)
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar)
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 2. Install
+```
+pip install pkbar
+```
+
+### 3. Usage
+
+- `pkbar.Pbar` (progress bar)
+```python
+import pkbar
+import time
+
+pbar = pkbar.Pbar(name='loading and processing dataset', target=10)
+
+for i in range(10):
+ time.sleep(0.1)
+ pbar.update(i)
+```
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)
+```python
+import pkbar
+import torch
+
+# training loop
+train_per_epoch = num_of_batches_per_epoch
+
+for epoch in range(num_epochs):
+ ################################### Initialization ########################################
+ kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
+ # By default, all metrics are averaged over time. If you don't want this behavior, you could either:
+ # 1. Set always_stateful to True, or
+ # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
+ # All others will be averaged by the progbar before display.
+ ###########################################################################################
+
+ # training
+ for i in range(train_per_epoch):
+ outputs = model(inputs)
+ train_loss = criterion(outputs, targets)
+ train_rmse = torch.sqrt(train_loss)
+ optimizer.zero_grad()
+ train_loss.backward()
+ optimizer.step()
+
+ ############################# Update after each batch ##################################
+ kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
+ ########################################################################################
+
+ # validation
+ outputs = model(inputs)
+ val_loss = criterion(outputs, targets)
+ val_rmse = torch.sqrt(val_loss)
+
+ ################################ Add validation metrics ###################################
+ kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
+ ###########################################################################################
+```
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 4. Acknowledge
+Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)
+
+
+
+
+%package -n python3-pkbar
+Summary: Keras Progress Bar for PyTorch
+Provides: python-pkbar
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-pkbar
+# pkbar
+![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)
+
+Keras style progressbar for pytorch (PK Bar)
+
+### 1. Show
+- `pkbar.Pbar` (progress bar)
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar)
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 2. Install
+```
+pip install pkbar
+```
+
+### 3. Usage
+
+- `pkbar.Pbar` (progress bar)
+```python
+import pkbar
+import time
+
+pbar = pkbar.Pbar(name='loading and processing dataset', target=10)
+
+for i in range(10):
+ time.sleep(0.1)
+ pbar.update(i)
+```
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)
+```python
+import pkbar
+import torch
+
+# training loop
+train_per_epoch = num_of_batches_per_epoch
+
+for epoch in range(num_epochs):
+ ################################### Initialization ########################################
+ kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
+ # By default, all metrics are averaged over time. If you don't want this behavior, you could either:
+ # 1. Set always_stateful to True, or
+ # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
+ # All others will be averaged by the progbar before display.
+ ###########################################################################################
+
+ # training
+ for i in range(train_per_epoch):
+ outputs = model(inputs)
+ train_loss = criterion(outputs, targets)
+ train_rmse = torch.sqrt(train_loss)
+ optimizer.zero_grad()
+ train_loss.backward()
+ optimizer.step()
+
+ ############################# Update after each batch ##################################
+ kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
+ ########################################################################################
+
+ # validation
+ outputs = model(inputs)
+ val_loss = criterion(outputs, targets)
+ val_rmse = torch.sqrt(val_loss)
+
+ ################################ Add validation metrics ###################################
+ kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
+ ###########################################################################################
+```
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 4. Acknowledge
+Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)
+
+
+
+
+%package help
+Summary: Development documents and examples for pkbar
+Provides: python3-pkbar-doc
+%description help
+# pkbar
+![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)
+
+Keras style progressbar for pytorch (PK Bar)
+
+### 1. Show
+- `pkbar.Pbar` (progress bar)
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar)
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 2. Install
+```
+pip install pkbar
+```
+
+### 3. Usage
+
+- `pkbar.Pbar` (progress bar)
+```python
+import pkbar
+import time
+
+pbar = pkbar.Pbar(name='loading and processing dataset', target=10)
+
+for i in range(10):
+ time.sleep(0.1)
+ pbar.update(i)
+```
+```
+loading and processing dataset
+10/10 [==============================] - 1.0s
+```
+
+- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)
+```python
+import pkbar
+import torch
+
+# training loop
+train_per_epoch = num_of_batches_per_epoch
+
+for epoch in range(num_epochs):
+ ################################### Initialization ########################################
+ kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
+ # By default, all metrics are averaged over time. If you don't want this behavior, you could either:
+ # 1. Set always_stateful to True, or
+ # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
+ # All others will be averaged by the progbar before display.
+ ###########################################################################################
+
+ # training
+ for i in range(train_per_epoch):
+ outputs = model(inputs)
+ train_loss = criterion(outputs, targets)
+ train_rmse = torch.sqrt(train_loss)
+ optimizer.zero_grad()
+ train_loss.backward()
+ optimizer.step()
+
+ ############################# Update after each batch ##################################
+ kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
+ ########################################################################################
+
+ # validation
+ outputs = model(inputs)
+ val_loss = criterion(outputs, targets)
+ val_rmse = torch.sqrt(val_loss)
+
+ ################################ Add validation metrics ###################################
+ kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
+ ###########################################################################################
+```
+```
+Epoch: 1/3
+100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
+Epoch: 2/3
+100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
+Epoch: 3/3
+100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
+```
+
+### 4. Acknowledge
+Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)
+
+
+
+
+%prep
+%autosetup -n pkbar-0.5
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-pkbar -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..6fa464b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+3cb919745143b5398066d1be875afcdb pkbar-0.5.tar.gz